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Introduction 

QMotor 3.0 is a QNX based object-oriented single-processor software environment that allows the 

implementation of real-time control algorithms as C++ programs on standard Intel-processor-based 

personal computers (PCs). The QMotor 3.0 graphical user interface integrates functionality for testing 

and tuning of these control programs. In addition, it provides advanced data logging, plotting, and data 

exporting capabilities. The control program, as well as the development tools and the graphical user 

interface (GUI), can all execute simultaneously on the PC due to the deterministic response of the 

operating system (OS). This architecture replaces the traditional multiprocessor Host/DSP board 

architecture often used in control applications. Advantages of a single-processor system include 

reduced cost and lower complexity, as well as increased flexibility and upgradability. A client/server 

architecture decouples the control program from the hardware so that QMotor 3.0 can easily be 

extended to work with new hardware. QMotor 3.0 has been used successfully in many of the control 

experiments performed by the Clemson Control and Robotics group, including motor and robot 

control, active magnetic bearing experiments and vibration control for flexible structures. Some of 

these experiments are documented in [1], [2], [3] and [4]. 
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The high performance and flexibility of QMotor 3.0 allow for the implementation of many different 

control applications ranging from simple linear control routines to complex, nonlinear, 

multidimensional control algorithms. As an example of a complex control application, the control of 

robot manipulators with QMotor 3.0 is addressed in the second part of the article. Specifically, we 

present the design of the QMotor Robotic Toolkit (QMotor RTK). The Robotic Toolkit is a set of 

QMotor 3.0 control programs, C++ libraries, and utility programs for robot manipulator control and 

trajectory generation. It includes servo control programs for the Puma 560 manipulator, the Barrett 

Whole Arm Manipulator (WAM) [5], and the Integrated Motion Inc. (IMI) two-link manipulator, as 

well as a joint-level trajectory generator and a GUI. The RTK is a good example for demonstrating the 

open architecture of QMotor 3.0; that is, the RTK illustrates the use of multiple cooperating control 

programs and the integration of GUI programs. Additionally, the RTK demonstrates how object-

oriented techniques can be applied to control implementations to ensure extensibility and code reuse. 

Previous Research 

WinMotor, QMotor 1.0, and QMotor 2.0 [6] are the predecessors to QMotor 3.0. WinMotor and 

QMotor 1.0 are heterogeneous PC Host/DSP single-board computer (SBC) systems, where the control 

executes on a DSP SBC while a Host PC is used for the GUI to provide plotting, data logging, and 

control parameter tuning functions. The primary disadvantages of the Host/DSP architecture are the 

high cost of the hardware, the limited flexibility of the system, and the complexity of the software. 

To overcome these disadvantages, we developed QMotor 2.0, a single-processor control environment 

that executes both the control program and the GUI on the same processor. The use of modern high-

speed consumer-grade PCs coupled with a PC real-time OS allowed the development of a system that 

implements the control algorithm and the user interface on one CPU. This configuration reduced the 

cost and complexity of the system, for developers as well as for users. Several disadvantages of 

QMotor 2.0 became apparent with use. The first version of QMotor 2.0 only supported the MultiQ 

motion control board for hardware interfacing. To support additional hardware (e.g., cameras, fast A/D 
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boards, more I/O channels), multiple versions of QMotor for different hardware boards had to be 

developed since QMotor 2.0 did not support a flexible hardware interfacing architecture. This 

disadvantage resulted in confusion and higher maintenance costs (bug fixes and updates had to be 

applied to all of the versions, instead of to just one version). Other disadvantages of QMotor 2.0 were 

limited logging capabilities (e.g., it was not possible to set multiple logging modes, frequencies, and 

durations), limited plotting capabilities (e.g., dynamic autoscaling and multiple plot windows were not 

available), and the lack of online parameter tuning.  

To overcome the disadvantages of QMotor 2.0 and extend the capabilities of the QMotor framework 

for more complicated control applications, we have developed QMotor 3.0 and the QMotor RTK. We 

decided to extend the QMotor 3.0 framework with a robotic toolkit because of the complexity 

normally associated with a robotic application; that is, manipulator control systems contain not only 

the servo control implementation, but also trajectory generation, programming interfaces, and a user 

interface. Although many robot control languages have been created for the purpose of controlling 

manipulators, they are usually provided by the manipulator vendor and custom-tailored to the specific 

manipulator type. Since many of these robot control languages are not very flexible (e.g., with regard 

to interfacing to new system components such as sensors and visual feedback), previous research 

focused on building robot control libraries on top of a commonly used programming language (e.g.,

“C”). RCCL [7] and ARCL [8] are examples of such libraries. However, there is no straightforward 

way to modify the servo control algorithm in RCCL and ARCL (e.g., for Puma 560 robots, the servo 

control runs on a proprietary Mark II controller); therefore, one cannot implement new control 

strategies [9]. Also, the large amount of code and complexity of RCCL and ARCL make them very 

difficult to understand and modify. RCCL and ARCL are good examples of procedural programming 

reaching its limits; that is, both libraries use programming constructs (e.g., function pointers) that 

emulate object-oriented concepts. However, since the implementation language (C) is not object-

oriented, these constructs are difficult to understand and modify. 
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The robot control platforms described above have another common problem: If new functionality is 

needed or if new hardware is required, one must modify the source code. Modification of the internals 

of a complex robot control system is very error-prone. To overcome this problem, object-oriented 

approaches have been used with regard to robot control libraries. As an example of object oriented 

design, RIPE [10], developed at Sandia National Laboratories, defines an intuitive hierarchy of classes 

for robotic hardware. However, RIPE does not use object-oriented concepts at the servo level. 

MMROC+ [11] uses an object-oriented design only for error handling and process communication. 

OSCAR [12] is an extensive library that addresses many issues of object-oriented design for robotic 

systems. Specifically, OSCAR focuses mainly on the operational software layer (the layer between the 

user interface and the servo control). OSCAR is complex and requires multiple computing platforms. 

Zero++ [13] is a multiprocessor-net system that uses object-oriented concepts mostly for the 

programming interface. To summarize, none of the above-described robot control libraries use an 

entirely object-oriented design (e.g., the servo control is not included in the object-oriented design) or 

provide functionality for data logging, data plotting, and control parameter tuning. Additionally, many 

of the past libraries require multiple computing platforms (i.e., special controllers, DSPs or PCs 

running different Operating Systems) and/or proprietary hardware. As opposed to past systems, the 

RTK implements a homogeneous object-oriented design on a single PC and includes data logging, data 

plotting, and control parameter tuning. Specifically with regard to controls and QMotor, the features of 

Object Oriented design most heavily exploited here are data hiding (so that the user is able to 

implement certain functions without harming the control execution framework), and inheritance (so 

that parts of existing code can be re-used). These are demonstrated in the QMotor RTK section. The 

primary focus of this research has been to develop a real-time control platform using a single hardware 

and software environment (PC running QNX OS). QMotor was designed for simplicity and ease of 

use, in comparison to current research efforts such as the Open Control Platform (OCP)  [14]. A user 

can write working QMotor control programs in less than two hours, and the GUI is intuitive enough to 

get familiarized with in less than ten minutes.  
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QMotor 3.0 

Overview 

QMotor 3.0 runs on standard Intel PCs, a cost-effective and widely supported hardware platform. A 

single I/O board or multiple I/O boards provide the interface to the hardware. As with QMotor 2.0, the 

QNX real-time operating system [15] was selected as the software platform, as it provides all of the 

real-time functionality needed for the system and has proven to be robust and reliable. Although the 

system was developed under QNX 4, it was later ported to the QNX Real-Time Platform (RTP). The 

QNX RTP has the advantage that it is free for non commercial use. Additionally, it provides higher 

compatibility with UNIX systems than QNX 4 (e.g., it provides a POSIX-compliant interface and 

familiar development tools from the Linux OS, such as the GNU compiler).  QMotor 3.0 consists of 

three main parts (see Figure 1): 

• The hardware client/server architecture, 

• The control program library, 

• The QMotor GUI. 

In the following sections, these components are explained in detail. 

Figure 1. Overview of the QMotor 3.0 architecture. 
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Hardware Client/Server Architecture 

To control a physical system, a computer control program must be able to interact with it. Information 

about a system is determined through the use of sensors, which measure and report signals of the 

system (e.g., temperature, force, voltage). Actuators (e.g., motors, electromagnets) are used to change 

the state of the system. Both sensors and actuators utilize some sort of interface hardware such as ISA 

or PCI I/O boards. The software to operate these types of I/O boards has been traditionally called a 

device driver. Traditional device drivers (as in UNIX and Microsoft Windows NT) generally reside in 

an operating system's kernel and, as such, are difficult to write and maintain. In addition, accessing a 

kernel-mode device driver from a user-mode program requires a system call, which incurs overhead 

(see Figure 2). 

Consequently, many device manufacturers provide hardware interfacing libraries that are linked to the 

user's control program. This method is simpler than writing a kernel-mode device driver. It is also 

more efficient, since there is no need for a system call into the kernel. However, this method is also 

less secure. The device interface library must access hardware directly; therefore, the user’s control 

program must have privileged access (i.e., it must be run as root) and, hence, is capable of crashing or 

corrupting the entire system. Additionally, multiple programs may interfere while simultaneously 

attempting to communicate with the hardware board. To avoid this problem, only one control program 

may access the hardware at a time. 

The architecture of the QNX OS allows for an approach that overcomes the above-mentioned 

problems. Specifically, since QNX is a microkernel-based OS, it does not provide for kernel-mode 

device drivers. The QNX microkernel provides only minimal functionality (scheduling, message 

passing, etc.). Programs that serve the purpose of device drivers run in user mode. For a user program 

(e.g., a control program) to communicate with the device driver, interprocess communication (IPC) is 

used. The IPC is implemented by using shared memory and/or QNX message passing. Because a 

device driver serves the requests from one or multiple user programs, they are typically called 
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hardware servers. The user programs that use the server to communicate with the hardware are called 

clients. The client/server architecture is illustrated in Figure 3. 
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Figure 2. Traditional kernel mode device driver architecture. 
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Figure 3. Hardware client/server architecture. 

The advantages of using the client/server architecture as opposed to the traditional device driver 

architecture are: 

• Easier configuration: Servers can be started and stopped at any time.  

• Easier development: The hardware server is less complex than a device driver and can be 

developed and debugged in user mode. 
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• Performance: When using shared memory as the IPC mechanism, the only communication 

overhead is context switches between the client process and the server process. 

• Networking: QNX allows message passing to work over a network without any changes in the 

software. Hence, the client program can be located on a different machine from the server 

program, provided that the network is deterministic and fast enough for the transfer of I/O data. 

• Hardware sharing: Multiple clients can connect to the same hardware server and thereby 

share the same hardware without interfering with each other. 

• Using generic clients: A control program can use generic clients that are independent of the 

specific hardware board/hardware server. This advantage is explained further in the next 

section. 

I/O board servers are the most frequently used servers. All I/O board servers cycle continuously in a 

loop, reading analog-to-digital (A/D) channels, encoder channels, and digital inputs from the I/O board 

and writing digital-to-analog (D/A) values and digital outputs to the I/O board. all I/O board servers 

have common functionality which is reused by means of object-oriented techniques [16]. Specifically, 

a C++ base class IOBoardServer is designed to perform IPC with the client via shared memory. 

Then, the specific server classes (e.g., MultiQServer, STGServer) are derived from the class 

IOBoardServer by adding the code required for operation of the specific hardware board. Using a 

common base class not only reduces redundancy, but it also allows for generic clients. Since the 

communication with the client is performed in the base class, it is independent from the specific I/O 

board. Hence, the same generic client can be used with a variety of different I/O boards. Because 

hardware servers run as separate programs, a change in I/O boards only requires starting up a different 

server program. Client programs (e.g., QMotor 3.0 control programs) use the class IOBoardClient,

which provides a simple interface for the IPC with the I/O board server. Figure 4 illustrates the 

client/server architecture for the ServoToGo board. Table 1 lists all I/O board servers available for 

QMotor 3.0. 
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Figure 4. The client/server architecture for I/O boards. 

Table 1. I/O Boards 

Hardware Board A/D D/A Encoders Digital I/O Timers Special Features 
Quanser MultiQ ½ 8 8 6 16/8 3 -
Quanser MultiQ 3 8 8 8 8 3 -
ServoToGo S8 ½ 8 8 8 32 1 Watchdog Timer 
ComputerBoards 
CBDIO24/CTR3 

- - - 24 1 -

ComputerBoards 
PCI-DAS1602/16 

16 2 - 24 3 200-kHz Sampling 
Frequency 

Timer servers provide an accurate periodic clock signal to one or more timer clients (e.g., QMotor 3.0 

control programs) by sending QNX proxy messages to the timer clients. The client frequency must be 

an integer divisor of the timer server's clock source. Similar to the I/O board servers, a base class 

TimerServer contains the common functionality for all timer servers; that is, the base class manages 

a list of clients and periodically sends proxy messages to them. The derived classes implement the 

clock source, which may be a hardware source such as the ServoToGo S8 board's timer circuitry or a 

software source such as a QNX timer. (Note: Software timers should only be used for testing purposes, 

since they do not provide 100% reliable timing.) A timer server is available for the MultiQ board, the 
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ServoToGo board, and the CBDIO24/CTR3 board. Timer servers run at the highest priority in the 

system to ensure that they cannot be delayed by other processes. 

The class TimerClient provides a simple interface to communicate with the timer server. It allows 

the user’s program to execute at a certain frequency and also detects if the computation is too slow to 

complete in one timer period. Similar to the I/O board client, the timer client is a generic client; hence, 

timer client programs do not need to be changed or recompiled when switching the timer server. A 

timer client is part of the QMotor 3.0 framework to provide the timing for the control program. Figure 

5 illustrates the timer client/server architecture for the MultiQ I/O board. 

MultiQ Timer Server

MQTimerServer

TimerServer

Proxy Messages

Server
Program

Client

TimerClient Client Program
(e.g., QMotor 3.0
Control Program)

Figure 5. The client/server architecture for timer boards 

The Control Program 

The class ControlProgram provides a framework for developing control programs. All details of 

the control program execution (e.g., creating a real-time control loop, logging variables, changing 

control parameters) are handled by this class. To implement a specific control application, the user 

derives a class from the ControlProgram class (e.g., the class ManipulatorControl) and fills in 

the necessary functionality to implement the control algorithm. This functionality is contained in six 

virtual functions that are left blank in the base class ControlProgram (see See Table 2). The use of 

virtual functions allows a derived class to reimplement their functionality; thus, even if such a function 

is called from the base class, the reimplemented function will be used. 
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Table 2. The Main Functions of a QMotor 3.0 Control Program 

enterControl() Called when the control program is loaded
startControl() Called every time the control execution is started
control() Called regularly at the control frequency
stopControl() Called every time the control execution is stopped
exitControl() Called when the control program terminates
handleMessage() This function allows the control program to perform as a 

server, since handleMessage() is called when a 
message from another task (i.e., the client task) arrives.

An example QMotor 3.0 control program for a proportional-derivative (PD) controller is presented 

below. A QMotor control program usually starts with the declaration of a new class that implements 

the specific control application (here, the class PDControl). This new class is derived from the class 

ControlProgram. In the class declaration, all control variables are listed. Additionally, an object to 

operate the I/O board client and a low-pass filter object are declared. 

class PDControl : public ControlProgram
{
protected:

double q; // Current Position
double qd; // Desired Position
double error; // Current Position Error
double errorDot; // Derivative of Current Position Error
double torque; // Output Torque

double kp; // Proportional Control Gain
double kd; // Derivative Control Gain
double amplitude; // Amplitude of Desired Sine Trajectory
double frequency; // Frequency of Desired Sine Trajectory

double errorPrevious; // Error of last control cycle
ButterworthFilter<double> filter; // Filter for backwards difference

// ----- Clients -----
IOBoardClient *iobc; // To operate the I/O board

(...)
};

The function enterControl() is used to register log variables and control parameters. The values 

of log variables are automatically logged to a buffer, which can be plotted and exported from the GUI. 
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Control parameters are used for tuning the control from the GUI (i.e., the user can change the values of 

the control parameters from the GUI). By registering these variables, the QMotor 3.0 framework learns 

which C++ variables are to be transferred from/to the GUI. 

int PDControl::enterControl()
{
registerLogVariable(&q, "q", "Current Position");
registerLogVariable(&qd, "qd", "Desired Position");
registerLogVariable(&error, "error", "Position Error");
registerLogVariable(&errorDot, "errorDot", "Position Error Derivative");
registerLogVariable(&torque, "torque", "Control Torque");

registerControlParameter(&kp, "kp", "Proportional Gain");
registerControlParameter(&kp, "kd", "Derivative Gain");
registerControlParameter(&amplitude, "amplitude",

"Amplitude of Desired Sine Trajectory");
registerControlParameter(&frequency, "frequency",

"Frequency of Desired Sine Trajectory");

return 0;
}

The function startControl() creates the I/O board client, which is called iobc. The parameter 

qrts/iobs0 of the IOBoardClient constructor selects the desired I/O board server by specifying 

its name. Additionally, a filter for the backwards difference calculation is initialized in this function.  

int PDControl::startControl()
{

// Create the I/O board client
iobc = new IOBoardClient("qrts/iobs0");

// Initialize the filter
filter.setCutOffFrequency(100);
filter.setSamplingTime(d_controlPeriod);
filter.setAutoInit();

return 0;
}

Finally, the function control() implements the PD control algorithm. It is continuously called by 

the framework at the control frequency. The following code snippet also demonstrates the 

communication with the I/O board server via the use of the IOBoardClient object iobc:
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int PDControl::control()
{
// Get the current analog input from A/D Channel 0
q = iobc->getAdcValue(0);

// Calculate the desired trajectory
qd = sin(frequency * d_elapsedTime) * amplitude;

// Calculate the error and the derivative of error (backwards difference)
error = q - qd;
errorDot = filter.filter((error - errorPrevious) / d_controlPeriod);
errorPrevious = error;

// Calculate PD control
torque = kp * error + kd * errorDot;

// Set the current analog output of D/A channel 0
iobc->setDacValue(0, torque);

return 0;
}

The function stopControl() ensures that no voltage is sent to the D/A channel by setting it to zero. 

It then deletes the IOBoardClient object iobc to disconnect from the I/O board server. 

int PDControl::stopControl()
{
// Zero out the DAC
iobc->setDacValue(0, 0);

// Disconnect from I/O board server
delete iobc;

return 0;
}

Following development of a control program, the code is compiled and linked to the control program 

library. To start a control program, the user has two options: i) run it from the command line in stand-

alone mode, or ii) run it from the QMotor GUI. The latter option is explained in the following section. 

QMotor GUI 

The QMotor GUI is built for the QNX Photon MicroGUI graphical environment, and allows the user 

to interact with the control program. It is used to start and stop a control program, tune control gains 

online, and view/plot data in real time. 
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From the main window, the user can load a control program, set the control duration and control 

frequency, and execute the control program. In addition, the main window allows the user to open the 

following subwindows: i) the log variable window, ii) the control parameter window, iii) the watch 

window, and iv) numerous real-time plot windows. The main window is shown in Figure 6. 

Figure 6. Main window. 

The log variable window (Figure 7) displays a list of all available variables that have been registered 

for data logging in the control program. For each log variable, the user can specify the logging mode, 

frequency, start time, and duration. 

Figure 7. Log variable window. 

The control parameter window (Figure 8) displays a list of all variables that have been registered as 

control parameters in the C++ control program. From this window, the control parameters can be 
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adjusted to the desired values without recompiling the C++ control program code. Control parameter 

values can be modified while the control program is running (i.e., online parameter tuning is 

provided). 

Figure 8. Control parameter window 

The watch window (Figure 9) allows the user to see the real-time values of selected log variables 

during control execution.  

Figure 9. Watch window 

The QMotor 3.0 GUI allows the user to monitor logged variables during control execution in the form 

of numerous real-time plot windows (Figure 10). All variables selected for logging are available for 

plotting purposes. Any number of plot windows may be open at once, and any number of variables 

may be plotted in each window. Numerous autoscaling options are available. The plot windows 

provide flexible plotting options, including an export function to MATLAB. 
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Figure 10. Plot windows. 

QMotor RTK 

The QMotor RTK toolkit is specifically designed for the control of robot manipulators. The RTK is 

structured as a combination of ready-to-execute programs and C++ libraries. Since the RTK is built on 

top of QMotor 3.0, its main components are QMotor 3.0 control programs. Consequently, the user has 

the capability to log and plot control signals and tune the robot controller. The RTK is a modular and 

extensible robot control platform; hence, it is a good demonstration of the versatility of QMotor 3.0. 

The QMotor RTK works only at the joint level (i.e., forward/inverse kinematics and Cartesian 

trajectory generation are not currently included). It contains servo control programs for the WAM, the 

Puma 560, and the IMI manipulator. Also included is a generic joint-level trajectory generator and a 

GUI-based teachpendant. Additionally, various utility programs are part of the RTK. Figure 11 depicts 

a typical QMotor RTK configuration. Each box represents a separate program; lines represent message 

paths between the programs. The example system contains the teachpendant, the trajectory generator, 

the WAM servo control, and the WAM control panel. A ServoToGo S8 motion control board provides 

the hardware interface to the manipulator. To reconfigure an RTK system, one only has to start 

different programs. For example, to replace the WAM with a Puma 560 robot, one would start the 

program pumacontrol instead of wamcontrol.
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Figure 11. A typical QMotor RTK configuration. 

Design Philosophies 

In contrast to the procedural programming approach used for ARCL and RCCL, QMotor 3.0 and the 

RTK were both developed using an object-oriented approach. To highlight this difference in 

programming philosophy, we first note that the procedural programming approach is based on two 

major concepts: 

1. Data representation (e.g., representation of the current position error of a manipulator). 

2. Functions that operate on this data (e.g., a function that calculates the required torques from the 

position error). 

The above two concepts exist in the object-oriented approach as well. However, although procedural 

programming treats them separately, the object-oriented design ties them together; that is, they are 

grouped together in a construct called a class. The system can have any number of classes, identified 

by class names. For example, a PumaControl class would contain all of the data related to the 

control of a Puma robot (e.g., current position, output torques) and all functions that are related to the 

control (e.g., calculate the control algorithm, enable the arm power). To design an object-oriented 

system, the software engineer must carefully group data and functions into classes. With regard to a 

software platform for robotic applications, this choice is often intuitive; that is, classes represent 

physical objects (e.g., manipulators), functional components (e.g., the trajectory generator), and GUI 
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components. Consequently, the use of classes leads to a very intuitive modeling of the system. Several 

useful programming techniques are used in object-oriented programming: i) data abstraction, ii) 

encapsulation, iii) polymorphism, and iv) inheritance [16]. Among other benefits, these programming 

techniques have the following advantages: 

• To use a class, an object of the class has to be instantiated. To operate multiple physical objects 

(e.g., to control two manipulators of the same kind), the programmer simply instantiates multiple 

objects of the same class. 

• Polymorphism is the ability to provide the same interface to objects related by inheritance, but 

differing in implementation. The technique, implemented using virtual functions, is useful for 

developing generic programs (e.g., a trajectory generator can use the same generic interface for 

different manipulators). The correct implementation of the overridden function in the appropriate 

derived class associated with the object is chosen during execution of the program. 

• The use of classes leads to an open system that allows extension of the system via the design of 

new classes. Specifically, inheritance can be utilized; that is, any class can be defined to reuse 

generic data and functions from another class. 

Since inheritance is frequently used in the RTK, we will examine the concept of inheritance with 

regard to manipulator control software in detail. Once the software engineer starts to design classes for 

a manipulator control system, similarities between these classes become apparent. A class for the 

Puma 560 robot and a class for the WAM contain common functionality (i.e., they both use a servo 

control algorithm, determine the current position by encoders, etc.). A simple approach for developing 

both classes would be to first construct the class for the Puma 560 robot and then either rewrite the 

code for the WAM or copy the Puma 560 code and modify it (see Figure 12a). However, this approach 

leads to additional development effort and, hence, a higher probability of new errors. In addition, if the 

common functionality changes (e.g., due to bug fixes or improvements), then changes need to be 

applied to all of the copies. 
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To avoid these disadvantages, the inheritance feature of object-oriented programming can be used. To 

use inheritance, a base class ManipulatorControl is defined. This base class contains the 

common functionality described above. Then, the specific classes for the Puma 560 and the WAM 

manipulator are derived from this base class (see Figure 12b). Deriving means that the classes take 

over the functionality and data from the base class. Additionally, they are able to reimplement parts of 

this functionality and/or add new functionality and data. Once the base classes have been developed, 

the source code of the base class does not need to be changed and recompiled to add a derived class. 

On the other hand, a modification of the common functionality in the base class is automatically 

reflected in all derived classes (after recompilation). Hence, inheritance greatly supports code reuse. 

PumaControl WAMControl

Common
Functionality

Common
Functionality

Copy
and
Modify

a) b) ManipulatorControl

Common
Functionality

PumaControl

Common
Functionality

WAMControl

Common
Functionality

Base
Class

Derived
Classes

Figure 12. Code reuse through a) code duplication, and b) object-oriented programming. 

For general-purpose applications, object-oriented programming has become more and more popular 

over the last two decades. In real-time systems, however, the use of object-oriented programming has 

caught on more slowly. To some degree, this is due to the belief that object-oriented languages are 

inefficient and that they have unpredictable temporal characteristics [17]. Neither of these concerns 

can be attributed specifically to object-oriented programming. Concerns about the overhead created by 

a C++ compiler compared to C are not an issue. This overhead is minimal and can be neglected 

compared to the execution time of the control algorithms (see [18] for detailed information about C++ 

overhead). 

The use of an object-oriented design is only the first step in supporting code reuse. Whether the code 

will be reused for many applications is highly dependent on its simplicity and its design. That is, the 
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smaller and less complex a robot control platform is, the simpler it is for system developers to learn 

and reuse it. In previous work related to robot control software, a significant part of the software was 

often dedicated to establishing real-time and distributed computation using multiple processors, 

architectures, and operating systems. Such an architecture leads to large platforms that are more 

complex and heterogeneous. Furthermore, the technological progress in PC hardware and operating 

systems has made heterogeneous architectures superfluous for many applications. Hence, this article 

proposes a design that is less complex for two reasons: 

1. The design is homogeneous, since all components are developed with the same programming 

language and executed on the same processor. 

2. The design has very little real-time programming and communication overhead because these 

features are provided by QMotor 3.0 and the QNX OS. 

Previous platforms also attempted to include a wide range of robotic functionality. This approach 

contributes to additional complexity as well, and it often fails to achieve the desired outcome. The 

spectrum of robotic research areas and applications is so broad that a robotic platform is never able to 

include all of them (i.e., a specific application often requires modification of the platform when new 

functionality is required). We believe it is more beneficial for developers to be able to build on a 

lightweight and solid base of low-level functionality than to extend or modify a full-scale system. 

Hence, this research presents a bottom-up approach that starts by providing a flexible servo control 

level and then adds higher-level components (i.e., a joint-level trajectory generator and a joint-level 

teachpendant) on top of it. The important characteristics of this design are that it is modular and 

scalable. Components run independently from each other, separated by a clearly defined interface. 

Since researchers are often interested in just one special component of a robotic platform (e.g., they are 

interested in improving the servo control algorithm), the RTK’s modularity allows them to focus on 

their interest without learning the internals of the rest of the platform. Figure 13 shows some examples 



21

of different configurations of the QMotor RTK (all RTK components are indicated by white boxes and 

components replaced by the user are indicated by gray boxes). 

Hardware
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Servo Control

Trajectory
Generator

Teachpendant

Hardware
Servers

Servo Control

Trajectory
Generator

User Task Level
Program

Hardware
Servers

Servo Control

User Specific
Trajectory
Generator

Hardware
Servers

User Specific
Servo Control

Hardware
Servers

User Specific
Servo Control

Trajectory
Generator

Teachpendant

Figure 13. Example configurations of the QMotor RTK. 

Manipulator Control Classes 

The lowest level of the QMotor RTK is the servo control level, which consists of QMotor control 

programs for the Puma 560 robot, the WAM, and the IMI robot. These control programs implement an 

independent PD joint-tracking controller. As mentioned earlier, the first step in object-oriented design 

is to distinguish between common functionality/data and specific functionality/data. This concept is 

illustrated for the servo control level in Table 3 and 4.  

Table 3. Common and Specific Data for the Manipulator Control 

Common Data Specific Puma Data
• Potentiometer values 

Specific WAM Data 
• Torque ripple data 

Specific IMI Data

• Joint position and velocity for n joints 
• Control gains 
• Control modes 
• Joint and torque limits 
• Variables for I/O board communication 
• Other control parameters --- 
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Table 4. Common and Specific Functionality for the Manipulator Control 

Common Functionality Specific Puma Functionality
• Automatic encoder calibration 
• Motor angles to joint angles transformation 

(to include coupling effects) 
• Gravity compensation 

Specific WAM Functionality
• Automatic encoder calibration 
• Motor angles to joint angles transformation 

(to include coupling effects) 
• Joint torques to motor torques transformation 
• Gravity compensation 
• Torque ripple compensation 

Specific IMI Functionality

• Communication with the I/O board 
• Setting output torques by setting voltages of 

the D/A converters  
• Position readings through encoders 
• Enabling/disabling arm power by setting 

digital outputs 
• PD position control 
• Determining velocities by backwards 

difference and filtering 
• Communication with client tasks (e.g., to 

receive a desired trajectory) 
• Switching between control modes (e.g., zero- 

gravity mode/position control mode) 
• Safety checks for joint and torque limits 
• Generation of a simple test mode trajectory • Disable arm power functions (there is no 

software control over the arm power) 

All common functionality (Table 4, left column) and data (Table 3, left column) are contained in the 

base class ManipulatorControl. This class, which is derived from the ControlProgram class, 

implements the functions enterControl(), exitControl(), startControl(),

stopControl(), control(), and handleMessage() of the ControlProgram class. Figure 

14 depicts the flowcharts of these functions. Note that the handleMessage() function is not shown 

in the flowcharts. All of the functions listed in the flowcharts (control(), checkJointLimits(),

etc.) are virtual functions.  

Some functions of the base class ManipulatorControl contain basic functionality; some are left 

empty (e.g., the doCalibration() function is responsible for the automatic calibration procedure 

and, hence, is highly manipulator dependent). In the derived classes for the Puma 560 robot, the 

WAM, and the IMI robot, new functions are added and certain functions are reimplemented with 

modified functionality, as listed in Table 3 and 4(right column). Since the major part of the work is 
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done in the base class ManipulatorControl, the derived classes are significantly smaller and 

simpler. The following extensions are made in the PumaControl class: 

• The automatic encoder calibration procedure is added. This procedure determines the absolute 

position of the Puma by first getting a rough estimate from potentiometer readings and then 

performing the calibration by searching for the next index pulse. 

• The function getCurrentPosition() is reimplemented to take into account the coupling of 

joints 4, 5, and 6. 

• Gravity compensation is added. Gravity compensation calculates the torques resulting from the 

manipulator's weight and adds these to the output torque for compensation [19]. 

Similarly, the class WAMControl contains some extensions to implement WAM-specific 

functionality: 

• Variables and functions for the automatic encoder calibration procedure are added. 

• The functions getCurrentPosition() and setControlTorque() are reimplemented to 

take into account the coupling of joints 2/3 and joints 5/6. 

• Gravity compensation and torque ripple compensation are added. 

The only reimplemented functions of the class IMIControl are the arm power functions. As the IMI 

does not have software control for arm power, the arm power functionality is removed in the derived 

class IMIControl.

Trajectory Generator 

The trajectory generator is a separate QMotor control program that creates a stream of setpoints and 

forwards them to the manipulator control using QNX message passing. As the message protocol is 

generic, the trajectory generator can be used with any manipulator supported by the RTK. The 

trajectory generator operates at the joint level. It receives target positions from a client program and 
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then calculates a smooth trajectory to the target positions, including acceleration and deceleration. The 

client can send multiple target positions asynchronously. The positions are stored in a queue and are 

processed in first-in, first-out (FIFO) order. If there are multiple positions in the queue, two path 

segments are blended to ensure a smooth trajectory that does not stop the manipulator. The path-

blending algorithm is similar to that in [20]. 

control()

isArmPowerEnabled()

Is the arm power
enabled?

getCurrentPosition()
Get the current position of the manipulator

calculatePositionDerivatives()
Calculate the time derivatives of q and qd if

not known

calculateControlLaw()
Calculate the control law

setJointTorques()
Outputs the joint torques

to the manipulator

checkJointLimits()
Are current and desired joint

positions and velocities
within limits?

Exit with error status

Exit with success status

Yes

No

Yes

No

Exit with success
status

Are we in calibration
mode?

No

doCalibration()
Do all calculations
necessary for the

calibration procedure

checkTorqueLimits()
Are the torques
within limits?

Yes

Exit with error
statusMaximum

torques
exceeded for

too long

Yes

enterControl()

Allocate variables
Register log variables

Register control
parameters

exitControl()

Free variables

startControl()

Initialize variables &
filters

Connect to an I/O board
server

stopControl()

Zero out DACs

enableArmPower()
Enable the arm power

disableArmPower()
Disable the arm power

Disconnect from the I/O
board server

Figure 14. Flowchart of the functions enterControl(), exitControl(), startControl(), stopControl(), 

and control() in the class ManipulatorControl. 
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GUI Components 

The design of GUI components is very important with regard to simplifying the use of the manipulator 

control system. A real-time operating system like QNX 4 allows GUI programs to coexist with high 

priority control programs. To use object-oriented techniques for the GUI, all GUI components are 

implemented with the C++ library QWidgets++ [21]. The RTK contains four GUI programs: the 

manipulator control panel, the WAM control panel, the manual-move utility, and the teachpendant. 

The manipulator control panel (see Figure 15) is a generic control panel that works with all 

manipulators. The WAM control panel (not shown) extends the manipulator control panel by adding 

buttons for enabling and disabling the torque ripple compensation. 

Figure 15. The generic manipulator control panel. 

The manual-move utility (see Figure 16) is a simple program to test the servo control. It contains a 

slider for each joint. The user can move the sliders with the mouse, and the manipulator follows 

immediately. 

Figure 16. The manual-move utility. 
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The teachpendant (see Figure 17) uses the zero-gravity mode of the manipulator to allow the user to 

push the manipulator around in the workspace. Once the user has moved the manipulator to a desired 

target position, this position can be added to a list of points. The teachpendant also uses the trajectory 

generator to move the manipulator back to the taught positions. It is also possible to cycle the 

manipulator through all or some of the taught positions. Additionally, the teachpendant is able to 

control the Barrett Hand, an advanced three-finger gripper. Hence, complete pick-and-place operations 

can be programmed with the teachpendant. 

Figure 17. The teachpendant. 

Extending the System Using Inheritance 

The previous sections explained how object-oriented techniques accelerate the addition of new 

manipulator control programs to the QMotor RTK. This section illustrates in greater detail how 

inheritance can be used during the addition of a new control algorithm. Specifically, in this simple 

example, the controller is extended from a PD controller to a proportional-integral-derivative (PID) 

controller. 

Figure 18 shows the function calculatePositionControl(), which calculates the PD control in 

the base class ManipulatorControl. To implement the new controller, a new class 

WAMPIDControl is derived from the class WAMControl (see Figure 19, [a]). This class 
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reimplements the function calculatePositionControl(). The reimplemented function first 

calls the calculatePositionControl() function of the base class and, hence, uses the algorithm 

for the PD control of the base class (see Figure 19, [b]). Then the integral term is added (see Figure 19, 

[c]). Note that the function calculatePositionControl() of the base class and the derived class 

are distinguished by the scope prefixes ManipulatorControl:: and WAMPIDControl::.

void ManipulatorControl::calculatePositionControl()
{

// PD control
for (int i = 0; i < d_numJoints; i++)
{

d_controlTorque[i] +=
d_kp[i] * d_positionErrorRad[i]
+ d_kd[i] * (d_desiredVelocityRad[i] - d_velocityRad[i]);

}
}

Figure 18. The PD control calculation in the base class. 

class WAMPIDControl : public WAMControl [a]
{

// ----- Constructors -----
public:

WAMPIDControl (int argc, char *argv[]) : WAMControl(argc, argv) {}
~WAMPIDControl () {};

// ----- Manipulators -----
virtual void calculatePositionControl();

double d_ki[7]; // Integral Gain
double d_prevPositionErrorRad[7]; // Position error of the

// previous control cycle
double d_positionErrorInt[7]; // Integrated position error

};

void WAMPIDControl::calculatePositionControl()
{

// Call the base class to do the PD control
ManipulatorControl::calculatePositionControl(); [b]

// Then add the integral term
for (int i = 0; i < d_numJoints; i++) [c]
{

d_positionErrorInt[i] += 0.5 * d_controlPeriod
* (d_positionErrorRad[i] + d_prevPositionErrorRad[i]);

d_prevPositionErrorRad[i] = d_positionErrorRad[i];
d_controlTorque[i] += d_ki[i] * d_positionErrorInt[i];

}
}

Figure 19. The derived class WAMPIDControl. 
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Conclusions 

This article documents the architecture of the control environment QMotor 3.0. Object-oriented 

techniques and client/server architectures were used to foster flexibility and extensibility. Support for 

several new hardware interface boards was added after QMotor 3.0 was completed, simply by 

providing new hardware servers that are based on the IOBoardServer class. QMotor 3.0 has been 

used by Clemson University and other research institutions to implement a wide variety of control 

algorithms, some of which are documented in [1], [2], [3], and [4]. 

QMotor 3.0 has also been used as the basis for a robot control system  called the QMotor RTK, which 

also uses object-oriented techniques. The QMotor RTK was initially developed using Puma 

manipulators and was later extended to the Barrett WAM and the IMI Direct Drive robot. The QMotor 

RTK reuses code for implementing different manipulator control programs and GUI programs. 

Specifically, generic base classes and specific classes for the Puma 560 robot, the WAM, and the IMI 

robot have been developed. Figure 20 relates the code size of the generic and specific RTK 

components to the total code size, illustrating that the implementation of new manipulators requires a 

significantly smaller coding effort once the generic base class is implemented.  

Figure 20. Code size ratios for the supported manipulators. 
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