QMotor 3.0 and the QMotor Robotic Toolkit:
A PC-Based Control Platform

Markus S. Loffler, Nicolae P. Costescu, and Darren M. Dawson

Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29634-0915

[loffler, ncostes, ddawson]@ces.clemson.edu

Introduction

QMotor 3.0 is a QNX based object-oriented single-processor software environment that allows the
implementation of real-time control algorithms as C++ programs on standard Intel-processor-based
personal computers (PCs). The QMotor 3.0 graphical user interface integrates functionality for testing
and tuning of these control programs. In addition, it provides advanced data logging, plotting, and data
exporting capabilities. The control program, as well as the development tools and the graphical user
interface (GUI), can all execute simultaneously on the PC due to the deterministic response of the
operating system (OS). This architecture replaces the traditional multiprocessor Host/DSP board
architecture often used in control applications. Advantages of a single-processor system include
reduced cost and lower complexity, as well as increased flexibility and upgradability. A client/server
architecture decouples the control program from the hardware so that QMotor 3.0 can easily be
extended to work with new hardware. QMotor 3.0 has been used successfully in many of the control
experiments performed by the Clemson Control and Robotics group, including motor and robot
control, active magnetic bearing experiments and vibration control for flexible structures. Some of

these experiments are documented in [1], [2], [3] and [4].

The high performance and flexibility of QMotor 3.0 allow for the implementation of many different
control applications ranging from simple linear control routines to complex, nonlinear,
multidimensional control algorithms. As an example of a complex control application, the control of
robot manipulators with QMotor 3.0 is addressed in the second part of the article. Specifically, we
present the design of the QMotor Robotic Toolkit (QMotor RTK). The Robotic Toolkit is a set of
QMotor 3.0 control programs, C++ libraries, and utility programs for robot manipulator control and
trajectory generation. It includes servo control programs for the Puma 560 manipulator, the Barrett
Whole Arm Manipulator (WAM) [5], and the Integrated Motion Inc. (IMI) two-link manipulator, as
well as a joint-level trajectory generator and a GUIL. The RTK is a good example for demonstrating the
open architecture of QMotor 3.0; that is, the RTK illustrates the use of multiple cooperating control
programs and the integration of GUI programs. Additionally, the RTK demonstrates how object-

oriented techniques can be applied to control implementations to ensure extensibility and code reuse.

Previous Research

WinMotor, QMotor 1.0, and QMotor 2.0 [6] are the predecessors to QMotor 3.0. WinMotor and
QMotor 1.0 are heterogeneous PC Host/DSP single-board computer (SBC) systems, where the control
executes on a DSP SBC while a Host PC is used for the GUI to provide plotting, data logging, and
control parameter tuning functions. The primary disadvantages of the Host/DSP architecture are the

high cost of the hardware, the limited flexibility of the system, and the complexity of the software.

To overcome these disadvantages, we developed QMotor 2.0, a single-processor control environment
that executes both the control program and the GUI on the same processor. The use of modern high-
speed consumer-grade PCs coupled with a PC real-time OS allowed the development of a system that
implements the control algorithm and the user interface on one CPU. This configuration reduced the
cost and complexity of the system, for developers as well as for users. Several disadvantages of
QMotor 2.0 became apparent with use. The first version of QMotor 2.0 only supported the MultiQ

motion control board for hardware interfacing. To support additional hardware (e.g., cameras, fast A/D

2

boards, more I/O channels), multiple versions of QMotor for different hardware boards had to be
developed since QMotor 2.0 did not support a flexible hardware interfacing architecture. This
disadvantage resulted in confusion and higher maintenance costs (bug fixes and updates had to be
applied to all of the versions, instead of to just one version). Other disadvantages of QMotor 2.0 were
limited logging capabilities (e.g., it was not possible to set multiple logging modes, frequencies, and
durations), limited plotting capabilities (e.g., dynamic autoscaling and multiple plot windows were not

available), and the lack of online parameter tuning.

To overcome the disadvantages of QMotor 2.0 and extend the capabilities of the QMotor framework
for more complicated control applications, we have developed QMotor 3.0 and the QMotor RTK. We
decided to extend the QMotor 3.0 framework with a robotic toolkit because of the complexity
normally associated with a robotic application; that is, manipulator control systems contain not only
the servo control implementation, but also trajectory generation, programming interfaces, and a user
interface. Although many robot control languages have been created for the purpose of controlling
manipulators, they are usually provided by the manipulator vendor and custom-tailored to the specific
manipulator type. Since many of these robot control languages are not very flexible (e.g., with regard
to interfacing to new system components such as sensors and visual feedback), previous research
focused on building robot control libraries on top of a commonly used programming language (e.g.,
“C”). RCCL [7] and ARCL [8] are examples of such libraries. However, there is no straightforward
way to modify the servo control algorithm in RCCL and ARCL (e.g., for Puma 560 robots, the servo
control runs on a proprietary Mark II controller); therefore, one cannot implement new control
strategies [9]. Also, the large amount of code and complexity of RCCL and ARCL make them very
difficult to understand and modify. RCCL and ARCL are good examples of procedural programming
reaching its limits; that is, both libraries use programming constructs (e.g., function pointers) that
emulate object-oriented concepts. However, since the implementation language (C) is not object-

oriented, these constructs are difficult to understand and modify.

The robot control platforms described above have another common problem: If new functionality is
needed or if new hardware is required, one must modify the source code. Modification of the internals
of a complex robot control system is very error-prone. To overcome this problem, object-oriented
approaches have been used with regard to robot control libraries. As an example of object oriented
design, RIPE [10], developed at Sandia National Laboratories, defines an intuitive hierarchy of classes
for robotic hardware. However, RIPE does not use object-oriented concepts at the servo level.
MMROC+ [11] uses an object-oriented design only for error handling and process communication.
OSCAR [12] is an extensive library that addresses many issues of object-oriented design for robotic
systems. Specifically, OSCAR focuses mainly on the operational software layer (the layer between the
user interface and the servo control). OSCAR is complex and requires multiple computing platforms.
Zero++ [13] is a multiprocessor-net system that uses object-oriented concepts mostly for the
programming interface. To summarize, none of the above-described robot control libraries use an
entirely object-oriented design (e.g., the servo control is not included in the object-oriented design) or
provide functionality for data logging, data plotting, and control parameter tuning. Additionally, many
of the past libraries require multiple computing platforms (i.e., special controllers, DSPs or PCs
running different Operating Systems) and/or proprietary hardware. As opposed to past systems, the
RTK implements a homogeneous object-oriented design on a single PC and includes data logging, data
plotting, and control parameter tuning. Specifically with regard to controls and QMotor, the features of
Object Oriented design most heavily exploited here are data hiding (so that the user is able to
implement certain functions without harming the control execution framework), and inheritance (so
that parts of existing code can be re-used). These are demonstrated in the QMotor RTK section. The
primary focus of this research has been to develop a real-time control platform using a single hardware
and software environment (PC running QNX OS). QMotor was designed for simplicity and ease of
use, in comparison to current research efforts such as the Open Control Platform (OCP) [14]. A user
can write working QMotor control programs in less than two hours, and the GUI is intuitive enough to

get familiarized with in less than ten minutes.

QMotor 3.0

Overview

QMotor 3.0 runs on standard Intel PCs, a cost-effective and widely supported hardware platform. A
single I/O board or multiple I/O boards provide the interface to the hardware. As with QMotor 2.0, the
QNX real-time operating system [15] was selected as the software platform, as it provides all of the
real-time functionality needed for the system and has proven to be robust and reliable. Although the
system was developed under QNX 4, it was later ported to the QNX Real-Time Platform (RTP). The
QNX RTP has the advantage that it is free for non commercial use. Additionally, it provides higher
compatibility with UNIX systems than QNX 4 (e.g., it provides a POSIX-compliant interface and
familiar development tools from the Linux OS, such as the GNU compiler). QMotor 3.0 consists of

three main parts (see Figure 1):

o The hardware client/server architecture,
e The control program library,
e The QMotor GUIL.

In the following sections, these components are explained in detail.

User Control Program

P T T———

Hardware
§

Servers ,/f‘;" - %

- QMotor Control _ Bt
QMotor GUI Program Library <:> Experiment

Hardware Boards

\

Figure 1. Overview of the QMotor 3.0 architecture.

Hardware Client/Server Architecture

To control a physical system, a computer control program must be able to interact with it. Information
about a system is determined through the use of sensors, which measure and report signals of the
system (e.g., temperature, force, voltage). Actuators (e.g., motors, electromagnets) are used to change
the state of the system. Both sensors and actuators utilize some sort of interface hardware such as ISA
or PCI I/O boards. The software to operate these types of I/O boards has been traditionally called a
device driver. Traditional device drivers (as in UNIX and Microsoft Windows NT) generally reside in
an operating system's kernel and, as such, are difficult to write and maintain. In addition, accessing a
kernel-mode device driver from a user-mode program requires a system call, which incurs overhead

(see Figure 2).

Consequently, many device manufacturers provide hardware interfacing libraries that are linked to the
user's control program. This method is simpler than writing a kernel-mode device driver. It is also
more efficient, since there is no need for a system call into the kernel. However, this method is also
less secure. The device interface library must access hardware directly; therefore, the user’s control
program must have privileged access (i.e., it must be run as roof) and, hence, is capable of crashing or
corrupting the entire system. Additionally, multiple programs may interfere while simultaneously
attempting to communicate with the hardware board. To avoid this problem, only one control program

may access the hardware at a time.

The architecture of the QNX OS allows for an approach that overcomes the above-mentioned
problems. Specifically, since QNX is a microkernel-based OS, it does not provide for kernel-mode
device drivers. The QNX microkernel provides only minimal functionality (scheduling, message
passing, efc.). Programs that serve the purpose of device drivers run in user mode. For a user program
(e.g., a control program) to communicate with the device driver, interprocess communication (IPC) is
used. The IPC is implemented by using shared memory and/or QNX message passing. Because a

device driver serves the requests from one or multiple user programs, they are typically called

6

hardware servers. The user programs that use the server to communicate with the hardware are called

clients. The client/server architecture is illustrated in Figure 3.

CPU ISA/PCI
Bus
OS Kernel P Interface Board
Device —
Driver = o
< gl |2
x 8| |F| |8
¥ w
System Call
i Controlled
System
Control
Program /3
User Space .

Figure 2. Traditional kernel mode device driver architecture.

CPU ISA/PCI
Bus
OS Kernel » Interface Board
Control
Program 1 (]
B < a 2
IPC a < 8
¥]
Hardware o
Server = Controlled
T System
IPC
)
Control ._,.-(
Program 2 ? i ﬁ
User Space

Figure 3. Hardware client/server architecture.

The advantages of using the client/server architecture as opposed to the traditional device driver

architecture are:
e Easier configuration: Servers can be started and stopped at any time.

o FEasier development: The hardware server is less complex than a device driver and can be

developed and debugged in user mode.

e Performance: When using shared memory as the IPC mechanism, the only communication

overhead is context switches between the client process and the server process.

o Networking: QNX allows message passing to work over a network without any changes in the
software. Hence, the client program can be located on a different machine from the server

program, provided that the network is deterministic and fast enough for the transfer of I/O data.

e Hardware sharing: Multiple clients can connect to the same hardware server and thereby

share the same hardware without interfering with each other.

o Using generic clients: A control program can use generic clients that are independent of the
specific hardware board/hardware server. This advantage is explained further in the next

section.

1/O board servers are the most frequently used servers. All I/O board servers cycle continuously in a
loop, reading analog-to-digital (A/D) channels, encoder channels, and digital inputs from the I/O board
and writing digital-to-analog (D/A) values and digital outputs to the I/O board. all I/O board servers
have common functionality which is reused by means of object-oriented techniques [16]. Specifically,
a C++ base class IOBoardServer is designed to perform IPC with the client via shared memory.
Then, the specific server classes (e.g., MultiQServer, STGServer) are derived from the class
I0BoardServer by adding the code required for operation of the specific hardware board. Using a
common base class not only reduces redundancy, but it also allows for generic clients. Since the
communication with the client is performed in the base class, it is independent from the specific I/O
board. Hence, the same generic client can be used with a variety of different I/O boards. Because
hardware servers run as separate programs, a change in I/O boards only requires starting up a different
server program. Client programs (e.g., QMotor 3.0 control programs) use the class IOBoardClient,
which provides a simple interface for the IPC with the I/O board server. Figure 4 illustrates the
client/server architecture for the ServoToGo board. Table 1 lists all I/O board servers available for

QMotor 3.0.

ServoToGo I/O Board Server
Server
STGServer Program
‘ IOBoardServer ‘

‘ D/A ‘ Digital Out ‘ ‘ A/D ‘ Digital In ‘ Encoders ‘ Shared Memory

‘ IOBoardClient ‘ Client Program
] (e.g., QMotor 3.0
Client Control Program)

Figure 4. The client/server architecture for I/O boards.

Table 1. I/0 Boards

Hardware Board | A/D | D/A | Encoders | Digital I/O | Timers | Special Features
Quanser MultiQ % 8 8 6 16/8 3 -

Quanser MultiQ 3 8 8 8 8 3 -

ServoToGo S8 Y2 8 8 8 32 1 Watchdog Timer
ComputerBoards - - - 24 1 -

CBDIO24/CTR3

ComputerBoards 16 2 - 24 3 200-kHz Sampling
PCI-DAS1602/16 Frequency

Timer servers provide an accurate periodic clock signal to one or more timer clients (e.g., QMotor 3.0
control programs) by sending QNX proxy messages to the timer clients. The client frequency must be
an integer divisor of the timer server's clock source. Similar to the I/O board servers, a base class
TimerServer contains the common functionality for all timer servers; that is, the base class manages
a list of clients and periodically sends proxy messages to them. The derived classes implement the
clock source, which may be a hardware source such as the ServoToGo S8 board's timer circuitry or a
software source such as a QNX timer. (Note: Software timers should only be used for testing purposes,

since they do not provide 100% reliable timing.) A timer server is available for the MultiQ board, the

ServoToGo board, and the CBDIO24/CTR3 board. Timer servers run at the highest priority in the

system to ensure that they cannot be delayed by other processes.

The class TimerClient provides a simple interface to communicate with the timer server. It allows
the user’s program to execute at a certain frequency and also detects if the computation is too slow to
complete in one timer period. Similar to the I/O board client, the timer client is a generic client; hence,
timer client programs do not need to be changed or recompiled when switching the timer server. A
timer client is part of the QMotor 3.0 framework to provide the timing for the control program. Figure

5 illustrates the timer client/server architecture for the MultiQ I/O board.

MultiQ Timer Server
) Server
MQTimerServer Program
‘ TimerServer ‘
Proxy Messages
‘ TimerClient ‘ Client Program
; (e.g., QMotor 3.0
Client Control Program)

Figure 5. The client/server architecture for timer boards

The Control Program

The class ControlProgram provides a framework for developing control programs. All details of
the control program execution (e.g., creating a real-time control loop, logging variables, changing
control parameters) are handled by this class. To implement a specific control application, the user
derives a class from the ControlProgram class (e.g., the class ManipulatorControl) and fills in
the necessary functionality to implement the control algorithm. This functionality is contained in six
virtual functions that are left blank in the base class ControlProgram (see See Table 2). The use of
virtual functions allows a derived class to reimplement their functionality; thus, even if such a function

is called from the base class, the reimplemented function will be used.

10

Table 2. The Main Functions of a QMotor 3.0 Control Program

enterControl () Called when the control program is loaded

startControl () Called every time the control execution is started

control () Called regularly at the control frequency

stopControl () Called every time the control execution is stopped

exitControl () Called when the control program terminates

handleMessage () | This function allows the control program to perform as a
server, since handleMessage () is called when a
message from another task (i.e., the client task) arrives.

An example QMotor 3.0 control program for a proportional-derivative (PD) controller is presented
below. A QMotor control program usually starts with the declaration of a new class that implements
the specific control application (here, the class PDControl). This new class is derived from the class
ControlProgram. In the class declaration, all control variables are listed. Additionally, an object to

operate the I/0 board client and a low-pass filter object are declared.

class PDControl : public ControlProgram

{

protected:
double q; // Current Position
double gd; // Desired Position
double error; // Current Position Error
double errorDot; // Derivative of Current Position Error
double torque; // Output Torque
double kp; // Proportional Control Gain
double kd; // Derivative Control Gain

double amplitude; // Amplitude of Desired Sine Trajectory
double frequency; // Frequency of Desired Sine Trajectory

double errorPrevious; // Error of last control cycle
ButterworthFilter<double> filter; // Filter for backwards difference

/] ----- Clients -----
IOBoardClient *iobc; // To operate the I/0 board

(...
bi

The function enterControl () is used to register log variables and control parameters. The values

of log variables are automatically logged to a buffer, which can be plotted and exported from the GUI.

11

Control parameters are used for tuning the control from the GUI (i.e., the user can change the values of
the control parameters from the GUI). By registering these variables, the QMotor 3.0 framework learns
which C++ variables are to be transferred from/to the GUL

int PDControl::enterControl ()

{

registerLogVariable (&g, "g", "Current Position") ;
registerLogVariable (&gd, "gd", "Desired Position") ;

registerLogVariable (&error, "error", "Position Error") ;
registerLogVariable (&errorDot, "errorDot", "Position Error Derivative") ;
registerLogVariable (&torque, "torque", "Control Torque") ;
registerControlParameter (&kp, "kp", "Proportional Gain") ;
registerControlParameter (&kp, "kd", "Derivative Gain") ;

registerControlParameter (&litude, "amplitude",

"Amplitude of Desired Sine Trajectory") ;
registerControlParameter (&frequency, "frequency",

"Frequency of Desired Sine Trajectory") ;

return O0;

}

The function startControl () creates the I/O board client, which is called iobec. The parameter
grts/iobs0 of the IOBoardClient constructor selects the desired I/O board server by specifying

its name. Additionally, a filter for the backwards difference calculation is initialized in this function.

int PDControl::startControl ()

// Create the I/0 board client
iobc = new IOBoardClient ("grts/iobs0") ;

// Initialize the filter
filter.setCutOffFrequency (100) ;
filter.setSamplingTime (d_controlPeriod) ;
filter.setAutoInit () ;

return 0;

Finally, the function control () implements the PD control algorithm. It is continuously called by
the framework at the control frequency. The following code snippet also demonstrates the

communication with the I/O board server via the use of the ITOBoardClient object iobc:

12

int PDControl::control ()

{

// Get the current analog input from A/D Channel 0
g = iobc->getAdcValue (0) ;

// Calculate the desired trajectory
gd = sin(frequency * d _elapsedTime) * amplitude;

// Calculate the error and the derivative of error (backwards difference)
error = g - qd;
errorDot = filter.filter((error - errorPrevious) / d controlPeriod) ;

errorPrevious = error;

// Calculate PD control
torque = kp * error + kd * errorDot;

// Set the current analog output of D/A channel 0
iobc->setDacValue (0, torque) ;

return O0;

The function stopControl () ensures that no voltage is sent to the D/A channel by setting it to zero.

It then deletes the IOBoardClient object iobc to disconnect from the I/O board server.

int PDControl: :stopControl ()

{

// Zero out the DAC
iobc->setDacValue (0, 0);

// Disconnect from I/O board server
delete iobc;

return 0;

Following development of a control program, the code is compiled and linked to the control program
library. To start a control program, the user has two options: i) run it from the command line in stand-

alone mode, or ii) run it from the QMotor GUI. The latter option is explained in the following section.

QMotor GUI

The QMotor GUI is built for the QNX Photon MicroGUI graphical environment, and allows the user
to interact with the control program. It is used to start and stop a control program, tune control gains

online, and view/plot data in real time.

13

From the main window, the user can load a control program, set the control duration and control
frequency, and execute the control program. In addition, the main window allows the user to open the
following subwindows: 1) the log variable window, ii) the control parameter window, iii) the watch

window, and iv) numerous real-time plot windows. The main window is shown in Figure 6.

Main P

@MIEZ@[F | Control Program Windows Help

Control Program: /FDControl.gop
Configuration File: /PDContral.cfg

Control Freguency 1000 H
Contral Duration H

Elapsed Time 2.7 sec

Contral Program is Stopped

Figure 6. Main window.

The log variable window (Figure 7) displays a list of all available variables that have been registered
for data logging in the control program. For each log variable, the user can specify the logging mode,

frequency, start time, and duration.

ndaw

Edit Help
Variable Hame | Logging Mode | Frequency | Durakion | Start Time
errar |Timed o| [1000 Je| [100 [¢] [o [+]
errarDat |Timed o| [1000 Je| |50 l¢| [20 [+]
q |Timed | [100 l¢| [100 [¢] [o [+]
o
torgue |E\.rent Triggered v| |IDDD |v| |IDD |v|

Figure 7. Log variable window.

The control parameter window (Figure 8) displays a list of all variables that have been registered as

control parameters in the C++ control program. From this window, the control parameters can be

14

adjusted to the desired values without recompiling the C++ control program code. Control parameter
values can be modified while the control program is running (i.e., online parameter tuning is

provided).

itrol Parameter Window

Edit View Help

Variable Name | vatue
-
d_kp [15000 [e][12000 [e]4000 [#|[3800 Je][7o0 [#][700 [+][1500 [+]
d_kd |130 |4H150 |+H53 |+||32 |+||5 |+||5 |0||10 H L
d_pasitionFiltercutoff 100 [+] m
T -
d_defaultvelocity [35 [+]3s [+]3s [+][3s [+][zs [+][2s [#][2s [+]

Figure 8. Control parameter window

The watch window (Figure 9) allows the user to see the real-time values of selected log variables

during control execution.

| window §|:|| G}
Watches Edit View Help

WVariable Name Value |

2,7360085

1.8240064

6,3840222

d_position 1.8240064

2,7360095

2,7360095

2,7360095

Figure 9. Watch window

The QMotor 3.0 GUI allows the user to monitor logged variables during control execution in the form
of numerous real-time plot windows (Figure 10). All variables selected for logging are available for
plotting purposes. Any number of plot windows may be open at once, and any number of variables
may be plotted in each window. Numerous autoscaling options are available. The plot windows

provide flexible plotting options, including an export function to MATLAB.

15

= d_desiredPosition [A]

—— d desiredPosition [1]

prls} } d_deziredPozition [2]\

o f
-8
-28 e

3 4 5 3 7 8 El 18 11

Time [sec]

Figure 10. Plot windows.

QMotor RTK

The QMotor RTK toolkit is specifically designed for the control of robot manipulators. The RTK is
structured as a combination of ready-to-execute programs and C++ libraries. Since the RTK is built on
top of QMotor 3.0, its main components are QMotor 3.0 control programs. Consequently, the user has
the capability to log and plot control signals and tune the robot controller. The RTK is a modular and
extensible robot control platform; hence, it is a good demonstration of the versatility of QMotor 3.0.
The QMotor RTK works only at the joint level (i.e., forward/inverse kinematics and Cartesian
trajectory generation are not currently included). It contains servo control programs for the WAM, the
Puma 560, and the IMI manipulator. Also included is a generic joint-level trajectory generator and a
GUI-based teachpendant. Additionally, various utility programs are part of the RTK. Figure 11 depicts
a typical QMotor RTK configuration. Each box represents a separate program; lines represent message
paths between the programs. The example system contains the teachpendant, the trajectory generator,
the WAM servo control, and the WAM control panel. A ServoToGo S8 motion control board provides
the hardware interface to the manipulator. To reconfigure an RTK system, one only has to start
different programs. For example, to replace the WAM with a Puma 560 robot, one would start the

program pumacontrol instead of wamcontrol.

16

WAM Control
Panel

stream of

desired
target positions T positions WAM Servo Torques STG Server

- > _I?"-!t teve > Control # (Interfaces the
Teachp B . ", rajectary - (PD+Gravity - ServoToGo
current joint position Generator current joint pasition Compensation) — Board)
Positions
QMotor QMotor
Framework Framework

w
WAM

Figure 11. A typical QMotor RTK configuration.

Design Philosophies

In contrast to the procedural programming approach used for ARCL and RCCL, QMotor 3.0 and the
RTK were both developed using an object-oriented approach. To highlight this difference in
programming philosophy, we first note that the procedural programming approach is based on two

major concepts:
1. Data representation (e.g., representation of the current position error of a manipulator).

2. Functions that operate on this data (e.g., a function that calculates the required torques from the

position error).

The above two concepts exist in the object-oriented approach as well. However, although procedural
programming treats them separately, the object-oriented design ties them together; that is, they are
grouped together in a construct called a class. The system can have any number of classes, identified
by class names. For example, a PumaControl class would contain all of the data related to the
control of a Puma robot (e.g., current position, output torques) and all functions that are related to the
control (e.g., calculate the control algorithm, enable the arm power). To design an object-oriented
system, the software engineer must carefully group data and functions into classes. With regard to a
software platform for robotic applications, this choice is often intuitive; that is, classes represent

physical objects (e.g., manipulators), functional components (e.g., the trajectory generator), and GUI
17

components. Consequently, the use of classes leads to a very intuitive modeling of the system. Several
useful programming techniques are used in object-oriented programming: i) data abstraction, ii)
encapsulation, iii) polymorphism, and iv) inheritance [16]. Among other benefits, these programming

techniques have the following advantages:

e To use a class, an object of the class has to be instantiated. To operate multiple physical objects
(e.g., to control two manipulators of the same kind), the programmer simply instantiates multiple

objects of the same class.

e Polymorphism is the ability to provide the same interface to objects related by inheritance, but
differing in implementation. The technique, implemented using virtual functions, is useful for
developing generic programs (e.g., a trajectory generator can use the same generic interface for
different manipulators). The correct implementation of the overridden function in the appropriate

derived class associated with the object is chosen during execution of the program.

e The use of classes leads to an open system that allows extension of the system via the design of
new classes. Specifically, inheritance can be utilized; that is, any class can be defined to reuse

generic data and functions from another class.

Since inheritance is frequently used in the RTK, we will examine the concept of inheritance with
regard to manipulator control software in detail. Once the software engineer starts to design classes for
a manipulator control system, similarities between these classes become apparent. A class for the
Puma 560 robot and a class for the WAM contain common functionality (i.e., they both use a servo
control algorithm, determine the current position by encoders, efc.). A simple approach for developing
both classes would be to first construct the class for the Puma 560 robot and then either rewrite the
code for the WAM or copy the Puma 560 code and modify it (see Figure 12a). However, this approach
leads to additional development effort and, hence, a higher probability of new errors. In addition, if the
common functionality changes (e.g., due to bug fixes or improvements), then changes need to be

applied to all of the copies.
18

To avoid these disadvantages, the inheritance feature of object-oriented programming can be used. To
use inheritance, a base class ManipulatorControl is defined. This base class contains the
common functionality described above. Then, the specific classes for the Puma 560 and the WAM
manipulator are derived from this base class (see Figure 12b). Deriving means that the classes take
over the functionality and data from the base class. Additionally, they are able to reimplement parts of
this functionality and/or add new functionality and data. Once the base classes have been developed,
the source code of the base class does not need to be changed and recompiled to add a derived class.
On the other hand, a modification of the common functionality in the base class is automatically

reflected in all derived classes (after recompilation). Hence, inheritance greatly supports code reuse.

a) b) ManipulatorControl Base
~—") Class

Common
Functionality

and T
Modify -

_>

Functionality Functionality

Figure 12. Code reuse through a) code duplication, and b) object-oriented programming.

Derived
Classes

PumaControl | Copy | wAMControl Pyﬁivaﬁ{@ y

For general-purpose applications, object-oriented programming has become more and more popular
over the last two decades. In real-time systems, however, the use of object-oriented programming has
caught on more slowly. To some degree, this is due to the belief that object-oriented languages are
inefficient and that they have unpredictable temporal characteristics [17]. Neither of these concerns
can be attributed specifically to object-oriented programming. Concerns about the overhead created by
a C++ compiler compared to C are not an issue. This overhead is minimal and can be neglected
compared to the execution time of the control algorithms (see [18] for detailed information about C++

overhead).

The use of an object-oriented design is only the first step in supporting code reuse. Whether the code

will be reused for many applications is highly dependent on its simplicity and its design. That is, the

19

smaller and less complex a robot control platform is, the simpler it is for system developers to learn
and reuse it. In previous work related to robot control software, a significant part of the software was
often dedicated to establishing real-time and distributed computation using multiple processors,
architectures, and operating systems. Such an architecture leads to large platforms that are more
complex and heterogeneous. Furthermore, the technological progress in PC hardware and operating
systems has made heterogeneous architectures superfluous for many applications. Hence, this article

proposes a design that is less complex for two reasons:

1. The design is homogeneous, since all components are developed with the same programming

language and executed on the same processor.

2. The design has very little real-time programming and communication overhead because these

features are provided by QMotor 3.0 and the QNX OS.

Previous platforms also attempted to include a wide range of robotic functionality. This approach
contributes to additional complexity as well, and it often fails to achieve the desired outcome. The
spectrum of robotic research areas and applications is so broad that a robotic platform is never able to
include all of them (i.e., a specific application often requires modification of the platform when new
functionality is required). We believe it is more beneficial for developers to be able to build on a
lightweight and solid base of low-level functionality than to extend or modify a full-scale system.
Hence, this research presents a bottom-up approach that starts by providing a flexible servo control
level and then adds higher-level components (i.e., a joint-level trajectory generator and a joint-level
teachpendant) on top of it. The important characteristics of this design are that it is modular and
scalable. Components run independently from each other, separated by a clearly defined interface.
Since researchers are often interested in just one special component of a robotic platform (e.g., they are
interested in improving the servo control algorithm), the RTK’s modularity allows them to focus on

their interest without learning the internals of the rest of the platform. Figure 13 shows some examples

20

User Task Level

components replaced by the user are indicated by gray boxes).

Teachpendant Program
Trajectory Trajectory
Generator Generator

User Specific
Trajectory
Generator

b

b

v

Teachpendant

'

Trajectory
Generator

)

Servo Control

Servo Control

Servo Control

!

!

!

User Specific
Servo Control

User Specific
Servo Control

:

:

Hardware
Servers

Hardware
Servers

Hardware
Servers

Hardware
Servers

Hardware
Servers

of different configurations of the QMotor RTK (all RTK components are indicated by white boxes and

Figure 13. Example configurations of the QMotor RTK.

Manipulator Control Classes

The lowest level of the QMotor RTK is the servo control level, which consists of QMotor control
programs for the Puma 560 robot, the WAM, and the IMI robot. These control programs implement an
independent PD joint-tracking controller. As mentioned earlier, the first step in object-oriented design
is to distinguish between common functionality/data and specific functionality/data. This concept is

1llustrated for the servo control level in Table 3 and 4.

Table 3. Common and Specific Data for the Manipulator Control

Common Data Specific Puma Data

e Potentiometer values

Specific WAM Data
e Torque ripple data

e Joint position and velocity for n joints

e Control gains

e Control modes

e Joint and torque limits

Specific IMI Data

e Variables for I/O board communication

e Other control parameters

21

Table 4. Common and Specific Functionality for the Manipulator Control

Common Functionality Specific Puma Functionality

e Communication with the I/O board e Automatic encoder calibration

e Setting output torques by setting voltages of | ® Motor angles to joint angles transformation
the D/A converters (to include coupling effects)

e Position readings through encoders ¢ Gravity compensation

e Enabling/disabling arm power by setting

digital outputs Specific WAM Functionality

e PD position control e Automatic encoder calibration

e Determining velocities by backwards e Motor angles to joint angles transformation
difference and filtering (to include coupling effects)

e Communication with client tasks (e.g., to e Joint torques to motor torques transformation
receive a desired trajectory) e Gravity compensation

e Switching between control modes (e.g., zero- | e Torque ripple compensation
gravity mode/position control mode)

e Safety checks for joint and torque limits Specific IMI Functionality

e Generation of a simple test mode trajectory * Disable arm power functions (there is no
software control over the arm power)

All common functionality (Table 4, left column) and data (Table 3, left column) are contained in the
base class ManipulatorControl. This class, which is derived from the ControlProgram class,
implements the functions enterControl(), exitControl(), startControl (),
stopControl (), control (), and handleMessage () of the ControlProgram class. Figure
14 depicts the flowcharts of these functions. Note that the handleMessage () function is not shown
in the flowcharts. All of the functions listed in the flowcharts (control (), checkJointLimits (),

etc.) are virtual functions.

Some functions of the base class ManipulatorControl contain basic functionality; some are left
empty (e.g., the doCalibration () function is responsible for the automatic calibration procedure
and, hence, is highly manipulator dependent). In the derived classes for the Puma 560 robot, the
WAM, and the IMI robot, new functions are added and certain functions are reimplemented with

modified functionality, as listed in Table 3 and 4(right column). Since the major part of the work is

22

done in the base class ManipulatorControl, the derived classes are significantly smaller and

simpler. The following extensions are made in the PumaControl class:

e The automatic encoder calibration procedure is added. This procedure determines the absolute
position of the Puma by first getting a rough estimate from potentiometer readings and then

performing the calibration by searching for the next index pulse.

e The function getCurrentPosition () is reimplemented to take into account the coupling of

joints 4, 5, and 6.

e Gravity compensation is added. Gravity compensation calculates the torques resulting from the

manipulator's weight and adds these to the output torque for compensation [19].

Similarly, the class WAMControl contains some extensions to implement WAM-specific

functionality:
e Variables and functions for the automatic encoder calibration procedure are added.

e The functions getCurrentPosition () and setControlTorque () are reimplemented to

take into account the coupling of joints 2/3 and joints 5/6.
e Gravity compensation and torque ripple compensation are added.

The only reimplemented functions of the class IMIControl are the arm power functions. As the IMI
does not have software control for arm power, the arm power functionality is removed in the derived

class IMIControl.

Trajectory Generator

The trajectory generator is a separate QMotor control program that creates a stream of setpoints and
forwards them to the manipulator control using QNX message passing. As the message protocol is
generic, the trajectory generator can be used with any manipulator supported by the RTK. The

trajectory generator operates at the joint level. It receives target positions from a client program and
23

then calculates a smooth trajectory to the target positions, including acceleration and deceleration. The
client can send multiple target positions asynchronously. The positions are stored in a queue and are
processed in first-in, first-out (FIFO) order. If there are multiple positions in the queue, two path
segments are blended to ensure a smooth trajectory that does not stop the manipulator. The path-

blending algorithm is similar to that in [20].

‘ enterControl () ‘ ‘ control ()

No P
isArmPowerEnabled () Exit with success
Is the arm power status

Allocate variables
Register log variables
Register control

parameters enabled?
Yes doCalibration ()
Are we in calibration Do all calculations
mode? necessary for the
calibration procedure
‘ exitControl () ‘ No

‘ Free variables getCurrentPosition ()

Get the current position of the manipulator

startControl ()

)

checkJointLimits ()
Are current and desired joint
positions and velocities

Exit with error status

Initialize variables & within limits?
filters
Connect to an I/0O board
server
i calculatePositionDerivatives ()
Calculate the time derivatives of g and q if
enableArmPower () not known
Enable the arm power ¢
calculateControlLaw ()
Calculate the control law
‘ stopControl () ‘

checkTorqueLimits ()
Are the torques

)

Exit with error
status

ithin limits? Maximum
Zero out DACs SR T torques
exceeded for
¢ too long
disableArmPower () setJointTorques ()
Disable the arm power Outputs the joint torques
¢ to the manipulator
Disconnect from the 1/0 ¢
board server C Exit with success status)

Figure 14. Flowchart of the functions enterControl(), exitControl(), startControl(), stopControl(),
and control() in the class ManipulatorControl.
24

GUI Components

The design of GUI components is very important with regard to simplifying the use of the manipulator
control system. A real-time operating system like QNX 4 allows GUI programs to coexist with high
priority control programs. To use object-oriented techniques for the GUI, all GUI components are
implemented with the C++ library QWidgets++ [21]. The RTK contains four GUI programs: the
manipulator control panel, the WAM control panel, the manual-move utility, and the teachpendant.
The manipulator control panel (see Figure 15) is a generic control panel that works with all
manipulators. The WAM control panel (not shown) extends the manipulator control panel by adding

buttons for enabling and disabling the torque ripple compensation.

| £/ QMotar RTK - Manipulator Contral Panel - Purna 560
| doint 1 | Joint 2 | doint 3 | Joint 4 | doint 5 | Joint 6
Current Position [28.9 | [645 | [132 | 128 | [141 | [228 |
Position Error [0.0178 | [0.0400 | [o.oos2 | [ooo7e | [oooes | [oo139 |
| Arm Power Off | | Calibrate |

Figure 15. The generic manipulator control panel.

The manual-move utility (see Figure 16) is a simple program to test the servo control. It contains a
slider for each joint. The user can move the sliders with the mouse, and the manipulator follows

immediately.

|§ Manual Move - Barrett Whole Arm Manipulator
Joint 1 _ D
Joint 2 : D
Joint 3 [}
Joint 4 [g70 _ D _

Figure 16. The manual-move utility.

25

The teachpendant (see Figure 17) uses the zero-gravity mode of the manipulator to allow the user to
push the manipulator around in the workspace. Once the user has moved the manipulator to a desired
target position, this position can be added to a list of points. The teachpendant also uses the trajectory
generator to move the manipulator back to the taught positions. It is also possible to cycle the
manipulator through all or some of the taught positions. Additionally, the teachpendant is able to
control the Barrett Hand, an advanced three-finger gripper. Hence, complete pick-and-place operations

can be programmed with the teachpendant.

E| Teachpendant - Barrett Whole Arm Manipulator

File Edit Teach Playback Help

Mew Position || Delete Position {O Zero Grawity Mode || Add Current Position || Playback..

Position Name | Go There | Joint 1 | soint2 | soint 3 | Joint 4 | Joint 5 | soints | soint 7
Eefore grasp m [-266 | [11247] 831 | [po.20 | [9857 | 2820 | [oaoo

3 4

lifting up position m [1000 | [z000 | (3000 | [1z000 | [-9s57 | [2820 | [o.0o |
over target m [444 | [2088 | [2077 | |28 | [ee65 | [5972 | [ooD |

Figure 17. The teachpendant.

Extending the System Using Inheritance

The previous sections explained how object-oriented techniques accelerate the addition of new
manipulator control programs to the QMotor RTK. This section illustrates in greater detail how
inheritance can be used during the addition of a new control algorithm. Specifically, in this simple
example, the controller is extended from a PD controller to a proportional-integral-derivative (PID)

controller.

Figure 18 shows the function calculatePositionControl (), which calculates the PD control in
the base class ManipulatorControl. To implement the new controller, a new class

WAMPIDControl 1is derived from the class WAMControl (see Figure 19, [a]). This class

26

reimplements the function calculatePositionControl (). The reimplemented function first
calls the calculatePositionControl () function of the base class and, hence, uses the algorithm
for the PD control of the base class (see Figure 19, [b]). Then the integral term is added (see Figure 19,
[c]). Note that the function calculatePositionControl () of the base class and the derived class

are distinguished by the scope prefixes ManipulatorControl: : and WAMPIDControl: :.

void ManipulatorControl: :calculatePositionControl ()
{
// PD control
for (int i = 0; i < d numJoints; i++)
{
d_controlTorque [i] +=
d kpl[i]l * d positionErrorRad[i]
+ d _kd[i] * (d_desiredVelocityRad[i] - d velocityRadl[i]);
}
}
Figure 18. The PD control calculation in the base class.
class WAMPIDControl : public WAMControl [a]
{
/] ----- Constructors -----
public:
WAMPIDControl (int argc, char *argv[]) : WAMControl (argc, argv) {}
~WAMPIDControl () {};
/] ----- Manipulators -----

virtual void calculatePositionControl () ;

double d ki[7]; // Integral Gain
double d prevPositionErrorRad[7]; // Position error of the

// previous control cycle
double d positionErrorInt[7]; // Integrated position error

bi

void WAMPIDControl::calculatePositionControl ()

{
// Call the base class to do the PD control
ManipulatorControl::calculatePositionControl () ; [b]

// Then add the integral term
for (int i = 0; i < d numJoints; i++) [c]
{
d positionErrorInt[i] += 0.5 * d controlPeriod
* (d_positionErrorRad[i] + d prevPositionErrorRad[i]) ;
d prevPositionErrorRad[i] = d positionErrorRadl[i];
d controlTorque[i] += d ki[i] * d positionErrorInt [i];

Figure 19. The derived class WAMPIDControl.

27

Conclusions

This article documents the architecture of the control environment QMotor 3.0. Object-oriented
techniques and client/server architectures were used to foster flexibility and extensibility. Support for
several new hardware interface boards was added after QMotor 3.0 was completed, simply by
providing new hardware servers that are based on the I0BoardServer class. QMotor 3.0 has been
used by Clemson University and other research institutions to implement a wide variety of control

algorithms, some of which are documented in [1], [2], [3], and [4].

QMotor 3.0 has also been used as the basis for a robot control system called the QMotor RTK, which
also uses object-oriented techniques. The QMotor RTK was initially developed using Puma
manipulators and was later extended to the Barrett WAM and the IMI Direct Drive robot. The QMotor
RTK reuses code for implementing different manipulator control programs and GUI programs.
Specifically, generic base classes and specific classes for the Puma 560 robot, the WAM, and the IMI
robot have been developed. Figure 20 relates the code size of the generic and specific RTK
components to the total code size, illustrating that the implementation of new manipulators requires a

significantly smaller coding effort once the generic base class is implemented.

IMI
2%

WAM
20%

Common
63%

Figure 20. Code size ratios for the supported manipulators.

28

References

[10]

[11]

B.T. Costic, S.P. Nagarkatti, D.M. Dawson, and M.S. de Queiroz, "Autobalancing DCAL
controller for rotating unbalanced disk,” Proc. of the American Control Conference, Chicago, IL,

June 2000, pp. 2092-2096.

M. Feemster, A. Behal, P. Aquino, and D.M. Dawson, "Tracking control of the induction motor
in the presence of magnetic saturation effects,” Proc. of the IEEE Conference on Decision and

Control, Phoenix, AZ, Dec. 1999, pp. 341-346.

W.E. Dixon, D.M. Dawson, E. Zergeroglu, and A. Behal, "Adaptive tracking control of a
wheeled mobile robot via an uncalibrated camera system,” Proc. of the American Control

Conference, Chicago, IL, June 2000, pp. 1493-1497.

E. Zergeroglu, D.M. Dawson, M.S. de Queiroz, and M. Krstic, "On global output feedback
tracking control of robot manipulators," Proc. of the IEEE Conference on Decision and Control,

Sydney, Australia, Dec. 2000, pp. 5073-5078.

BA4-310 Software User Manual, Barrett Technologies, 139 Main St., Kendall Square,
Cambridge, MA 02142, http://www.barretttechnology.com/robot.

N. Costescu, D. Dawson, and M. Loffler, "QMotor 2.0 - A real-time PC-based control
environment,” IEEE Control Systems Magazine, June 1999, pp. 68-76

J. Lloyd, M. Parker and R. McClain, "Extending the RCCL programming environment to
multiple robots and processors,” Proc. IEEE Int. Conf. Robotics & Automation, 1988, pp. 465—
469.

P. Corke and R. Kirkham, "The ARCL robot programming system", Proc. Int. Conf. Robots for
Competitive Industries, Brisbane, Australia, pp. 484-493.

N. Costescu, M. Loffler, E. Zergeroglu and D. M. Dawson, "QRobot - A multitasking PC-based
robot control system,” Microcomputer Applications Journal Special Issue on Robotics, vol. 18

no. 1, pp. 13-22.

D.J. Miller and R.C. Lennox, "An object-oriented environment for robot system architectures,”

IEEE Control Systems Magazine, February 1991, pp. 14-23.

C. Zielinski, "Object-oriented robot programming,”, Robotica, vol. 15, pp. 41-48, 1997.
29

Chetan Kapoor, "A reusable operational software architecture for advanced robotics,” Ph.D.

thesis, University of Texas at Austin, December 1996.

C. Pelich and F.M. Wahl, “A programming environment for a multiprocessor-net based
robot control unit,” Proc. 10th Int. Conf. on High Performance Computing, Ottawa, Canada,
1996.

[14] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J.V.R. Prasad, D. Schrage and G.

[17]

Vachtsevanos, “An open platform for reconfigurable control”, IEEE Control Systems Magazine,

June 2001, pp. 49-63.

QSSL, Corporate Headquarters, 175 Terence Matthews Crescent, Kanata, Ontario K2M 1W8
Canada, Tel: +1 800-676-0566 or +1 613-591-0931, Fax: +1 613-591-3579, e-mail:

info@qnx.com, [online] Available: http://qnx.com.

B. Stroustrup, “What is ‘object-oriented programming’,” Proc. 1st European Software Festival,
February 1991.

T.E. Bihari and P. Gopinath, "Object-oriented real-time systems: Concepts and examples,” IEEE
Computer, December 1992, pp. 25-32.

[18] B. Stroustrup, “An overview of the C++ programming language,” Handbook of Object

Technology, CRC Press, Boca Raton, 1999.

[19] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertia parameters of

the PUMA 560 Arm,” Proc. IEEE Int. Conf. Robotics and Automation 1, 1986, pp. 510-518.

[20] Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control., Cambridge,

MA: MIT Press, 1981.

[21] Quality Real-Time Systems, LLC, 6312 Seven Corners Center, Falls Church, VA 22044,

[online] Available: http://qrts.com.

30

