
 1

Telerobotic Decontamination and Decommissioning with QRobot, a PC-Based Robot Control System

Markus Loffler, Nick Costescu, Erkan Zergeroglu, Darren Dawson
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29634

Abstract

Robotic systems are well suited for decontamination and
decommissioning (D&D) tasks in hazardous environments.
Advanced semi-autonomous telerobotic solutions for D&D tasks
go beyond simple video-based interaction and include virtual
reality (VR) interfaces and flexible sensor integration. The
capability of those systems range from real-time control tasks to
graphical user interface (GUI) components utilizing video and
VR. This paper describes QRobot, a PC-based system for
telerobotic D&D operations. The system integrates hardware
interfacing, real-time joint level control, sensors, tool control,
networking and task level programming as well as video and VR
based operator interfaces. The system demonstrates that the
personal computer (PC), a cost effective and widely used
computing platform, is well suited to the integration of real-time
control tasks and advanced user interfaces. An experimental
section demonstrates the system’s functionality by using an
example workpiece as the subject of a D&D operation.

1 Introduction

The U.S. Department of Energy (DOE) is facing the
decontamination and decommissioning of a high number of
surplus facilities. These facilities often contain radioactive or
other hazardous material. Current technologies are often labor
intensive, time consuming, expensive, or they unnecessarily
expose workers to the hazardous material. The DOE is looking
for new and innovative technologies that allow D&D operations
to be faster, safer, and more cost-effective. Telerobotic systems
provide a good solution to this problem. They allow robots to be
remotely controlled from an operator console and provide visual
feedback to the operator. In basic systems, an operator controls
the robot directly (e.g. with a joystick) and receives video
feedback [1]. Performing a remote disassembly is a complicated,
often repetitive task, which requires skilled operators. Therefore,
much of the ongoing research focuses increasingly on the
development of semi-autonomous systems. These systems
perform higher level tasks, such as removing a bolt, triggered by
the operator. Furthermore, VR based operator interfaces are
desired to simplify interaction with the system.
This paper describes how the QRobot joint level control [2] was
extended to a complete semi-autonomous robot control system
for D&D operations. QRobot is the robotic part of the research
being conducted under DOE Grant DE-FG07-96ER14728,
entitled “Advanced Sensing and Control Techniques to Facilitate
Semi-Autonomous Decommissioning of Hazardous Sites” [3]. It
is a purely PC based system that integrates the following
components:

• A joint level control and a trajectory generator with a high
level programming interface for Puma manipulators.

• A 3D OpenGL-based hardware-accelerated robot simulator.

• Both video based and VR based operator interfaces.

• Teleobservation programs.

• Interfacing of different sensors.

• Control of different robotic end-effectors.
The experimental section of this paper documents the capability
of the QRobot system to perform a sample D&D operation.

2 Motivation for Developing a PC Based
System

The different components of an advanced semi-autonomous
telerobotic system have different hardware and software
requirements:

• The joint level control task and the trajectory generator
require hard real-time performance.

• The GUI needs to integrate VR and video techniques.
Hardware accelerated 3D rendering is required for the VR
interface.

• Networking capabilities are required in order to locate the
robot control hardware remotely from the operator console.
Networking is also required if a multiprocessor architecture
is used to divide the work among multiple computers (e.g.
video capture on one PC, robot control on another PC, etc.)

The above requirements usually lead to the integration of
proprietary solutions and expensive hardware platforms. As an
example, consider an RCCL based system. The software consists
of a robot control library (RCCL [4]) running on a Sun
workstation, Moper running on a LSI 11/2 processor, and
firmware joint level control running on digital servo boards
inside the Mark II [5]. Additional hardware required includes an
SBUS to VME bus adapter and a VME card cage. The closed
architecture of the Mark II controller prevents the
implementation of new, state-of-the-art control algorithms [2], as
well as the integration of sensors such as cameras into the
control loop. The heterogeneous architecture of this type of
system leads to a higher complexity of integration and higher
costs.
QRobot is entirely PC-based. The entire computational
functionality of the system, including the joint level control, is
implemented exclusively as PC software. Neither a dual
processor architecture (like PC/digital signal processing boards
solutions) nor special controller hardware (such as the Mark II’s
digital servo boards) is necessary.
This system has the following advantages:

• The system is cost-effective, because PCs and their
components are less expensive than proprietary controllers or
traditional Unix workstations.

• The system has a simpler architecture, since the additional
effort to integrate completely different hardware components
(such as VME cards with an SBUS computer) is not
required.

• The system is more flexible. To modify or extend the system,
only a change to PC source code is necessary.

 2

• The PC is a widely known and technically advancing
technology. Many powerful software packages as well as a
great variety of interface boards are available for the PC.

There are two developments that allow a PC based system to
fulfill the different hardware and software requirements stated
above. First, the advent of high-speed PC CPUs provides
computing power similar to or exceeding Unix workstations or
special purpose computers such as DSP boards [6]. Second, hard
real-time PC operating systems (OSs) are able to execute real-
time tasks (such as joint level control and trajectory generation)
as well as non real-time tasks (such as GUIs) on one CPU [7].

3 Overview of the Disassembly System

Figures 1, 2 and 3 show the software and hardware components
that are distributed across three PCs. The VR Operator Interface
PC runs Windows NT, while the Robot Control PC and the
WebCam PC run QNX, a real-time OS. The VR Operator
Interface and the Robot Simulator are integrated into one
Windows NT program. The Video Operator Interface contains
the actual disassembly program and communicates with the VR
Operator Interface over Internet Domain TCP/IP sockets.
The Disassembly Program issues high level commands to ARCL,
a robot control library that serves as the programming interface
and as the trajectory generator. ARCL generates a stream of
setpoints that are fed into the Joint Level Control. Observation
Windows provide visual feedback of the D&D operation. They
show a continuously updated image from one of the video
cameras. Multiple observation windows can be used with
different video cameras. The WebCam System allows video
feedback over the World Wide Web by using a standard web
browser. The camera, the pan/tilt unit (PTU) and the zoom lens
of the WebCam System are also accessible from the observation
windows running on the Robot Control PC. Special programs,
called Hardware Servers, are responsible for accessing the PC
boards (e.g. PTU server, MultiQ server, etc.) Control Servers
implement control algorithms (e.g. zoom lens control, robot joint
level control.) Applications use Clients to communicate with
servers.

Windows NT

VR Operator
Interface/Robot

Simulator
TCP/IP

Disassembly
Commands

Trajectory

to
 th

e
R

ob
ot

 C
on

tr
ol

 P
C

Figure 1. The VR Operator Interface PC

Different PC boards are used in the system: Quanser’s MultiQ
board and ServoToGo’s S8 board for digital and analog I/O, the
Imagenation PXC200 and Matrox Meteor frame grabbers for
video capturing, and a custom board for interfacing the
force/torque (F/T) sensor. The main hardware component is a
Puma 560 Manipulator. A hardware retrofit interfaces the
encoders and potentiometers of the Puma and the power
amplifiers of the Mark II directly to an I/O board. The F/T
Sensor and the Toolchanger are mounted on the Puma’s wrist. A
tool rack provides three tools for the disassembly: a Gripper, an
Air Motor for bolt removal, and a Laser Diode to simulate torch
cuts. The vision system consists of two cameras. The first, called
the Overhead Camera, is mounted directly over the Puma’s
workspace and is connected to the Robot Control PC (Figure 2.)

The second camera, called the WebCam, is mounted on a PTU,
equipped with a zoom lens, and is connected to the WebCam PC
(Figure 3.)

QNX Real-Time Operating System

QNX/QRobot port of the
ARCL Robot Control Library

Joint Level
Control

I/O Board
Client

MultiQ Server

Force/
Torque
Sensor
Server

Force/
Torque
Sensor
Client

Gripper
Tool

Changer

Force/
Torque
Sensor

Disassembly Program

 Video Operator
 Interface

Video
Client

PXC200 Video
Server

Overhead
Camera

Observation
Window (Overhead

Camera)

Video Client

Observation
Window

(WebCam)

Video Client

Pan Tilt Client

Laser
Diode

MultiQ Board
FT I/O
Board

PXC200 Frame
Grabber

Joint Level
Control
Client

Zoom Lens
Client

Air
Motor

Air
Valve

Air
Valve

Air
Valve

Puma 560
Manipulator

to
 th

e
W

eb
C

am
 P

C
 (

se
e

F
ig

ur
e

3)

to
 th

e
V

R
 O

pe
ra

to
r

In
te

rf
ac

e
P

C
 (

se
e

F
ig

ur
e

1)

Figure 2. The Robot Control PC

QNX Real-Time Operating System

CGI program

Matrox
Meteor Video

Server

Camera
Pan/Tilt

Unit

Pan/Tilt
Unit

Server

Apache Web Server

Pan/Tilt Unit
Client

Video Client

Matrox Meteor
Frame Grabber

Serial
Port

Zoom Lens Control

Zoom Lens
Client

Zoom
Lens

from the Robot
Control PC

(see Figure 1)

I/O Board Client

MultiQ Server

MultiQ Board

Figure 3. The WebCam PC

 3

4 Hardware Components

4.1 The Puma 560 Retrofit

The standard controller for Puma manipulators is the VAL-II
based Unimation Mark II. Six MC6503 based digital servo
boards perform the joint level control [5, 8]. Implementing the
control as a PC program allows the development of arbitrary
user-defined joint level controls and the integration of sensor
information into the control loop. To achieve this, a retrofit of
the Mark II hardware is necessary.
The hardware retrofit directly interfaces the encoders and
potentiometers of the Puma and the power amplifiers of the
Mark II directly to an PC I/O board. The TRC boards (TRC004,
TRC006 and the TRC041 card cable set), produced by Trident
Robotics and Research Inc. [9], were initially used for this
purpose [2]. The TRC boards provide a simple but proprietary
solution. That is, the user is dependent on one source of
hardware and software – Trident Robotics Research. In order to
make the system more flexible and less dependant on one
vendor’s hardware, the next step was to replace the TRC boards
with generic interface boards. Quanser Consulting’s MultiQ
board [10] was selected to replace the TRC004 and TRC006
boards. It was necessary to develop an additional simple
interface board to connect the MultiQ board to the amplifier
circuits of the Mark II. This interface board contains
preamplifiers and filtering circuitry for the noisy potentiometer
readings. The TRC041 cable card set was replaced by an in-
house developed cable card set.
The MultiQ boards do not support latching of digital inputs, a
feature that the TRC004 board provides for use with the Puma
560 encoder index pulses, required during the robot calibration
procedure. To solve this problem, the MultiQ hardware server
simulates the latching in software.
To demonstrate that the architecture is flexible enough to easily
accommodate other motion control interface boards, another
Mark II controller was retrofitted with a ServoToGo (STG) S8
interface board instead of a MultiQ board. A problem occurred
when using the encoders: the encoder channels of the MultiQ
board operate in the reverse direction than those of the STG
board. To compensate, the encoder values are reversed in the
STG hardware server.

4.2 End-Effector Hardware

The D&D tasks require various tools and sensors. To
accommodate these tasks, an ATI Industrial Automation Gamma
30/100 F/T sensor is mounted at the end of the robot arm. The
FT sensor is interfaced to the PC via an ISA bus controller
board.
The toolchanger is mounted on the FT sensor. It is a Light 5
Robotic Tool Changer, also from ATI. It contains 10 electric and
6 pneumatic pass-through ports, for electrical and pneumatic
connections on the end-effector. The custom-built tool rack
provides space for three tools.

• An MMR-002 air motor, from Micro-Motor Inc., is used for
bolt removal. A Gator Grip socket tool is mounted on the end
of the air motor. The Gator Grip is a universal socket that
automatically adjusts to varying bolt sizes, allowing bolt
removal operations to proceed even with several millimeters
of positioning error.

• A standard pneumatic gripper is used to remove stuck bolts
and the motor end cap.

• A laser diode is used to simulate a cutting torch.
Electrically controlled air valves actuate the tool changer, the
gripper and the air motor. Digital output lines of the MultiQ
board control all tools.

4.3 Observation System

The observation system consists of two Pulnix TMC-7 cameras.
One is connected to a Matrox Meteor PCI bus frame grabber, the
other uses an Imagenation PXC200 PCI bus frame grabber. One
camera is mounted in a fixed direction above the workspace. The
other camera is mounted on a Directed Perception PTU, model
PTU-46-17.5. The PTU is connected to the PTU controller (a
micro controller based constant acceleration open loop control),
which is in turn connected to the PC via an RS232 serial port.
The PTU mounted camera also uses a zoom lens. The motors
and potentiometers of the zoom lens are connected to a custom
interface board (containing amplifiers and voltage dividers),
which is then connected to a MultiQ for A/D and D/A.

5 Software Components

5.1 The Multitasking and Communication
Architecture

The system’s functionality is split into many cooperating tasks.
For these tasks to work seamlessly together, the OS must fulfill
certain requirements. It must provide priority based deterministic
CPU scheduling to ensure that high priority real-time tasks (e.g.
the joint level control) are not delayed by low priority non real-
time tasks (e.g. GUIs). It also must provide robust interprocess
communication (IPC) mechanisms so that the cooperating tasks
can synchronize and communicate.
The real-time microkernel based OS QNX, developed by QSSL
[11], meets all of these requirements. Unlike real-time extensions
such as RT-Linux or Hyperkernel for Windows NT, QNX is a
true microkernel real-time OS. One benefit of this is that the
whole spectrum of OS functions, including file access and
networking, can be used in real-time tasks.
Client/Server Architecture. The system utilizes two types of
servers. Hardware servers are used to access hardware. Control
servers implement a control algorithm. Both types of servers are
separate programs that usually cycle at a fixed rate. To exchange
data with a server (e.g. to send setpoints to a control server or to
read analog inputs from a hardware server), a program is linked
with the appropriate client library. The client library uses shared
memory or message passing to communicate with the server.
Message passing is a QNX IPC mechanism that is very flexible
because it is network transparent. This means that the same
client code will work with a server whether it is located on the
same PC or a remote PC. For example, the video client located
on the Robot Control PC can connect to the video server of the
overhead camera, also running on the Robot Control PC.
Alternately, it can connect to the WebCam Video Server, which
is running on the WebCam PC. This mechanism allows great
flexibility in distributing the resources of the system.
Another advantage of the client/server concept is that multiple
clients can use the same server. In this way, resources can be
accessed from multiple tasks. For example, the video clients of
the operator interface, the observation windows and the
WebCam can all use the overhead camera video server
simultaneously. Since QNX message passing provides

 4

synchronization implicitly, concurrent requests are automatically
serialized.
Finally, the interface between client and server adds a level of
abstraction to the hardware interfacing. To use different I/O
boards different servers are implemented, but the same generic
client can be used. The communication protocol between client
and server does not change. For a client to use a different I/O
board, a different server must be started, but no client code needs
to be changed or recompiled.
All clients and servers are written in C++. The MultiQ and the
STG S8 server perform digital and analog I/O at a fixed
frequency. A generic I/O board client is used to communicate
with either of these servers. The Matrox Meteor Server and the
Imagenation PXC200 Server capture frames on demand. A
generic video client is used to request and receive frames from
either server. The F/T sensor server is interfaced to the ISA F/T
sensor controller board. It reads the force and torque values
continuously and provides them to the F/T client in a shared
memory space. The PTU server controls the PTU over the
RS232 serial port. It receives messages from the PTU client that
contain the desired angles and issues move commands to the
controller. The zoom lens server receives the desired zoom factor
from the zoom lens client and uses a proportional position
control to set the focal length of the lens.
The timer server is a special server. It provides the clock for all
other servers, which guarantees synchronous behavior of the
different tasks.

5.2 Joint Level Control

The joint level control is implemented as a QNX program. This
is a very flexible solution, since the control algorithm can be
modified directly by changing and recompiling the control
program. The ever-increasing computing power of PCs allows
the implementation of more complex control algorithms. In
addition, it is now possible to include arbitrary sensor
information in the joint level control loop, which allows the
implementation of advanced sensor-based control algorithms
such as force-based control or direct visual servoing.
The joint level control used in the D&D system was developed
using QMotor [6], which is an environment for PC based control
program development and implementation. The control program
implements a PD controller with static and coulomb friction
compensation for all joints and gravity compensation for the
second and third joint. Joint velocities are manufactured via a
backward difference method and low pass filtered [2]. The joint
level control program works as a server and receives the stream
of setpoints via message passing from the joint level control
client, which is part of the QRobot version of ARCL. The
control can be switched to a zero gravity mode. In this mode, the
control only compensates for the gravity on the robot links
instead of servoing to desired setpoints [12]. The robot can be
freely moved by hand in this mode, which is used to teach end-
effector positions and orientations with the teachpendant
program.

5.3 Trajectory Generation and Robot Programming
Interface

To achieve the goal of an entirely PC-based system, a high-level
robot control API and trajectory generator package for the PC is
required. As there is no such package available for QNX, the
quickest solution is a port from a different platform. One of the
most sophisticated and well-known high level robot control

libraries is RCCL. John Lloyd, one of the developers of RCCL,
had unsuccessfully tried to port RCCL to QNX. For this reason,
RCCL was not considered for use in this project.
The Advanced Robot Control Library (ARCL), developed by
Peter Corke at CSIRO [13][14], provides similar functionality to
RCCL, although in a much more limited fashion. ARCL seemed
to be more suitable for a QNX port, because its modular
architecture separates platform dependent and platform
independent parts. ARCL was developed for Unix workstations.
Porting ARCL to QNX and integrating it with the QRobot
system required significant effort. This effort included making
the C source code C++ syntax compliant, debugging the existing
ARCL source code, developing the platform specific part of
ARCL (called the ARCL machine interface, or AMI), and
embedding the ARCL modules into the real-time environment of
QNX and the client/server architecture.
The main challenge of porting ARCL was writing the AMI for
QNX. The AMI is the platform dependent module that contains
functions for multitasking, timing and hardware interfacing of
the manipulator. Two problems occurred when developing the
AMI for QNX. First, the architecture of the AMI requires that
both the trajectory generator task and the user program task share
variables. This can be implemented either by using shared
memory between these tasks or by using threads. Since ARCL
was not designed to take advantage of shared memory, the
development of a special memory manager would have been the
only solution. Threads, the other approach, are multiple instances
of a process that share the same address space. QNX supports
threads, but in a limited fashion, and not all library functions are
“thread-safe”. Tests showed that the thread-based solution,
which is much easier to implement than the shared memory
manager, was adequate.
Semaphore management posed the other significant problem.
QNX semaphores do not behave in accordance with the ARCL
specification. This was rectified by modifying the way ARCL
uses semaphores. In addition, ARCL expects the OS to destroy
all semaphores at program termination, which is not the case
with QNX. Consequently, over time, the system runs out of
semaphores. To solve this problem, a semaphore manager was
added to the AMI to keep track of the semaphores in use and to
destroy them as the program terminates.
To integrate ARCL into the QRobot system, the QNX/QRobot
AMI was constructed to contain the following functions:

• A joint level control client sends the trajectory to the joint
level control server.

• Functionality was added to connect to the robot simulator
running on the Windows NT PC. Sockets were used as the
communication mechanism. A 100Mbps full-duplex point-
to-point Fast Ethernet link proved to be fast enough to ensure
that the robot simulator does not fall behind the trajectory
generator. The protocol is simple: the data sent contains the
stream of setpoints generated by the trajectory generator.
There are two modes of operation, test mode and standard
mode. Test mode allows running robot control programs with
the simulator alone, without accessing hardware. This is
useful for debugging robot programs without the risk of
damaging the robot. In standard mode, the trajectory is sent
to both the robot simulator and to the joint level control, so it
is possible to compare the movement of the real robot with
the simulator. A communication channel in the other
direction, from the robot simulator to ARCL, was added to
allow the virtual operator interface (which is part of the robot

 5

simulator) to send disassembly commands to the task level
program.

• Force and torque information is used to trigger an emergency
stop to minimize damage from collisions between the end-
effector and the workspace.

Rather than using ARCL’s limited functionality to control tools
(there is only a function to control the gripper), a C++ class was
developed for each tool. The tool classes use I/O board clients to
control the tools.
Although the port of ARCL achieved satisfactory results, it is not
an ideal solution. The use of threads is not 100% safe, since not
all QNX library functions are “thread-safe”, although we never
identified any crashes that could be attributed to threads. If a user
chooses to use a non thread-safe function in one of his programs,
the behavior of the system is undefined.

5.4 Robotic Utility Programs

To facilitate the use and calibration of the D&D system, a set of
robot utility programs was developed.
Teachpendant: To learn the end-effector positions and
orientations used in the D&D operation, a teachpendant program
was developed, see Figure 4.

Figure 4. The QRobot Teachpendant

The teachpendant uses the zero-gravity mode of the joint level
controller, which allows the user to easily push the robot around
in the workspace. Once a position and orientation is found, it can
be stored under a given name in a position list. It is possible to
leave teach mode at any time and move the robot to previously
taught positions. The position list can be stored in an ASCII file
for later use in the teachpendant, or for use from an ARCL
program.
PotVal: The PotVal utility performs the initial calibration
procedure of the Puma 560 that relates joint potentiometer
readings to encoder readings.
PumaCal: The PumaCal utility performs encoder calibration
after power up of the manipulator. It determines the current
position of the robot by using potentiometers and index pulses.
This utility is similar to RCCL’s pumacal utility [4], but
performs the calibration in only a fraction of the time.

5.5 The Disassembly Program

A motor is used to demonstrate a simple disassembly. The
objective is to remove the cap of the motor. Figure 5 shows the
steps performed by the system:
1. Remove the first bolt. The gator grip is used to unscrew the

bolt. Since the bolt usually stays in the housing, the
operator has the additional option to remove the unscrewed
bolt with the gripper and drop it into a container.

2. Remove the second bolt in the same fashion as described in
step 1.

3. Perform a torch cut. In the experiment, the torch is
simulated by a laser diode.

4. Remove the cap with the gripper and put it on the table.

1 2

34

Figure 5. Steps to Disassemble the Motor

The disassembly program is written in C++. For each
disassembly step, via points are determined with the
teachpendant program and saved to a file. The disassembly
program reads this file and creates transformations and position
equations for each via point. The position equations are the input
to the ARCL move function calls. Each disassembly step consists
of picking up the right tool from the tool rack, performing the
operation, and returning the tool to the rack. Some special
functions are defined to allow the operator to intervene in case
the system fails to complete a step. These functions include
manually getting or returning a tool and manually locking or
releasing a tool.

5.6 The Operator Programs

Four operator interface programs offer different control and
feedback functions. Observation windows and the video operator
interface run on the same PC as the robot control, but at a lower
priority. They use Photon, the windowing system for QNX.
Photon provides functionality similar to the X Window System
and Xt. To accelerate GUI development under Photon, a C++
class library (CPhoton) was developed.
Observation Windows. The observation window (see Figure 6)
provides live visual feedback from a video camera. When using
the WebCam, the observation window offers additional
functionality. Clicking in the image centers the PTU about that
point. The buttons at the bottom of the window control the
WebCam’s zoom lens.
It is possible to start multiple observation windows and connect
them to the same or different cameras. Since the observation
windows use message-passing based client/server
communication, the camera servers can be distributed over
multiple PCs. The disadvantage of message passing is reduced
speed in the image transfer. Depending on the PC’s performance,
image size, image color depth, network traffic, and the video
display driver, the observation window displays 1-5 frames per
second.

 6

Figure 6. Observation Window

Web Camera. The WebCam is a World Wide Web based visual
feedback, with similar functionality to the observation windows.
The Apache web server starts a CGI program whenever the web
page is accessed. The request for the web page contains the
desired pan/tilt angles and the desired zoom factor as parameters.
The CGI program moves the PTU to the desired position, sets
the zoom factor, and captures an image. This image is converted
to JPEG format, and a web page is dynamically created to show
the image. The client/server architecture allows multiple
observation windows and any number of web browsers to
request images at the same time. The advantage of the WebCam
is the accessibility from any Internet connected computer. The
disadvantage is the lack of continuous and fast updates of the
image.
Video Operator Interface. The video operator interface provides
even unskilled operators an easy-to-use interface to control the
disassembly tasks. The video image is used to trigger
disassembly operations. The operator moves the mouse cursor
over a certain part of the motor that he wants to disassemble. The
operator interface then displays a pop-up menu with a list of
disassembly options. For example, when the operator moves the
mouse over the motor end cap, the end cap is highlighted, and a
menu pops up with the menu item “Remove Cap” (see Figure 7).
After the operator selects an operation, the program begins to
perform the task and shows progress information in a dialog. As
the disassembly is being performed, the operator is able to
supervise the operation in the observation windows. In case the
disassembly of a part is unsuccessful, the operation can be
repeated.

Figure 7. Video Operator Interface

The image-based selection of disassembly operations is
convenient for the operator, but it also requires that the system
know where the parts of the object are located in the image. The
Image Processing group at Clemson University is investigating
the use of advanced image processing and 3D-object
virtualization techniques to automatically identify and locate
these parts for the disassembly task [3]. This research is not
addressed in this paper. To demonstrate the basic concept of the
operator interface, the coordinates are manually determined in
the current system.
Virtual Operator Interface/Robot Simulator. The video operator
interface works fine with a workpiece such as the motor and the
overhead camera. However, using different camera perspectives
or more complex workpieces can result in hidden parts that can
not be viewed and selected by the operator. For instance, the
front perspective of the motor would not show the second bolt at
the back of the motor. VR based operator interfaces overcome
this problem. Using a VR interface the operator is able to
navigate within the virtual scene and view parts from different
angles. The QRobot virtual operator interface is integrated into
the robot simulator.

Figure 8. The Virtual Operator Interface/Robot Simulator

Figure 8 shows a screenshot of the robot simulator. Since there
are no hardware accelerated 3D graphics libraries available for
QNX, the program runs under Windows NT and uses OpenGL, a
standard 3D graphics library [15].
The 3D scene consists of two Puma 560 robots, the toolrack and
the workpiece. The main window is split into three parts that
show the scene from different perspectives. In each sub-window,
the operator can navigate by using the mouse, selecting and
defining custom viewpoints or selecting the end-effector view.
The latter option simulates the view of a camera mounted on the
end-effector. The level of detail in the display can be reduced to
accelerate the display.
While the disassembly program is running, ARCL forwards the
trajectory information to the robot simulator. The VR operator
interface requires that the video based operator interface be
running, since the video based operator interface is linked to the
actual disassembly program. The convenient side effect is that
both operator interfaces work hand in hand (i.e. the disassembly
task can be started from either.)

 7

A special technique of 3D programming, called object picking,
gives the operator functionality similar to the video based
operator interface. Moving the mouse cursor over parts of the
motor highlights these parts. Clicking on the parts displays
menus with disassembly options. Once the operator selects a
disassembly option, the software encodes this operation into a
command word, and sends it to the video based operator
interface, which initiates the operation. This data transport uses
the same TCP/IP connection that is used to send the trajectory
information. Progress reports are also sent back to update the
progress dialog box as shown in Figure 8.
The disadvantage of the current version of the robot
simulator/operator interface is that the scene is hard-coded in the
simulator. Changing the scene is not trivial and requires
extensive programming effort. However, this compromise
establishes a working system at this stage of the project.

6 Experimental Results

There are three aspects of the experiment. The first aspect is the
reliability of the control system and the mechanical parts. The
system was successful in repeating the disassembly multiple
times without any problems. The joint level control was capable
of precisely moving different tools of different weights. Figure 9
shows the desired position trajectories for links 2 and 3 for the
bolt removal task in the top graphs.

0 10 20 30 40
-2.6

-2.4

-2.2

-2

-1.8

-1.6

Time [sec]

D

P

a

 Joint 2

0 10 20 30 40
-0.5

0

0.5

Time [sec]

 D
es
ire
d
P
os
iti
on
 [r
ad
]

 Joint 3

0 10 20 30 40
-3

-2

-1

0

1

2

3
x 10

-3

Time [sec]

 T
ra
ck
in
g
E
rr
or
 w
ith
 th
e
bo
lt
[ra
d]

0 10 20 30 40
-1.5

-1

-0.5

0

0.5

1
x 10

-3

Time [sec]

 T
ra
ck
in
g
E
rr
or
 w
ith
 th
e
bo
lt
[ra
d]

0 10 20 30 40
-3

-2

-1

0

1

2

3
x 10

-3

Time [sec]
 T
ra
ck
in
g
E
rr
or
 w
ith
ou
t t
he
 b
ol
t [
ra
d]

0 10 20 30 40
-1.5

-1

-0.5

0

0.5

1
x 10

-3

Time [sec]
 T
ra
ck
in
g
E
rr
or
 w
ith
ou
t t
he
 b
ol
t [
ra
d]

Figure 9. Trajectories and Tracking Errors for the Bolt
Removal

The middle graphs are the tracking errors. The bottom graphs
show the tracking errors for a test run without the bolt actually
being present. The actual bolt removal happens from t = 20 sec
to t = 30 sec. Comparing the tracking errors in the middle and
bottom graphs shows that the effect of the force created by
removing the bolt does not affect the control significantly.
The second aspect is the usability and reliability of the system
used by an untrained operator. The experiment shows that both
video and VR based operator interfaces provide an intuitive way
to control the D&D operation. Only a few mouse clicks are
necessary to guide the complete disassembly. Problems occur
when the operator needs to recover from a system failure or a
handling error. Generally, the capabilities of aborting operations
and returning to the initial state are limited. Often, the robot, the
tools, or workpieces have to be moved back manually to initial
positions.
Finally, the most interesting part is the stability of the GUIs and
the real-time control programs running together. The system
shows high stability in this issue. For example, it is possible to
open many observation windows while the D&D task is in
progress. The observation windows slow the GUIs down, but
they do not negatively impact the control or disassembly tasks.

7 Conclusion

The QRobot system described in this paper demonstrates the
feasibility of using a PC for the various tasks required in
telerobotic semi-autonomous D&D operations. It was shown
how real-time tasks, such as the joint control, can be integrated
with non real-time tasks, such as a GUI, on a single cost-
effective hardware platform. The client/server concept, using a
modern real-time OS as its platform, provides a flexible method
of communication for these tasks. Priority based scheduling
allows complex real-time control programs to coexist with low-
priority GUIs. The operator interfaces and the teleobservation
programs provide an easy-to-use telerobotic operator
environment.
Future research is motivated by the limitations of the system,
which originate in its software components and its architecture.
ARCL as a high-level control library is not a satisfactory, robust,
general-purpose solution. Although QRobot is entirely PC based,
it still uses two OSs: QNX (for all functions except the 3D robot
simulator) and Windows NT (for the 3D robot simulator). This
introduces higher complexity and costs. It would be desirable to
have all components running under the same OS. The system
was developed by integrating different software components. All
components have been specifically modified to work together,
which leads to a static architecture. For example, extending the
system to a different robot type would result in modifications of
ARCL, the joint level control, the robot simulator and the way
they communicate. The biggest problem is the limited flexibility
in adapting the system to different applications. Basically,
certain parts of QRobot (e.g. the robot simulator, the GUIs, the
tool clients) are specific to the D&D example of the motor
disassembly. Adapting the system to a different application
requires some knowledge of its internal workings.
To overcome these problems, the current research targets the
specification, design, and implementation of a new robot control
environment. Rather than being a specific robot control library
like RCCL or ARCL, it would be an open framework to manage
different mechatronic components that work together in D&D
operations and other robotic applications. The framework would
be object oriented, using the language C++. Objects would

 8

represent the different components of the system, for example
the trajectory generator, manipulators, tools and sensors. Object
oriented programming techniques like inheritance can be used to
reuse code and easily extend the system without knowing its
internals, thereby avoiding recompiling the whole system. The
framework would provide functionality to create and delete
objects, communication and relationships between objects, and
real-time task management.
The proposed research would address the following challenges:

• Design of an open system for different applications and
research areas.

• Design of a flexible system that allows the distribution of
objects over multiple PCs and uses real-time communication
over a network.

• Design of a system architecture that is highly platform
independent.

• Implementation of the complete system under one OS to
achieve a single PC, single OS solution.

This new robot control environment would use the concepts and
advantages of a purely PC based system described in this paper,
but improve the design to utilize state-of-the-art software
development tools and techniques. The resultant system would
allow researchers to focus on their actual application rather than
the technical framework.

Acknowledgements
This work is supported in part by the U.S. NSF Grants DMI-
9457967, CMS-9634796, ECS-9619785, DMI-9813213, EPS-
9630167, DOE Grant DE-FG07-96ER14728, ONR Grant
N00014-99-1-0589, and a DOC Grant.

References

[1] Vladimir Lumelsky, “On human performance in

telerobotics”, IEEE Transactions on Systems, Man and
Cybernetics, 21(5).

[2] N. Costescu, M. Loffler, E. Zergeroglu, and D.
Dawson, "QRobot - A Multitasking PC Based Robot
Control System'', Microcomputer Applications Journal
Special Issue on Robotics, Vol. 18 No. 1, pages 13-22.

[3] http://ece.clemson.edu/iaal/doeweb/doeweb.htm
[4] J. Lloyd, “Implementation of a Robot Control

Development Environment”, Masters Thesis, McGill
University, Dec.1985

[5] Unimation Inc., Danbury, Connecticut, “500 Series
Equipment and Programming Manual”, 1983.

[6] N. Costescu, D. M. Dawson, and M. Loffler, "QMotor
2.0 - A PC Based Real-Time Multitasking Graphical
Control Environment'', June 1999 IEEE Control
Systems Magazine, Vol. 19 Number 3 pages 68 - 76.

[7] D. Hildebrand, “An Architectural Overview of QNX”,
Proceedings of the Usenix Workship on Micro-Kernels
& Other Kernel Architectures, Seattle, April 1992.

[8] P. Corke, “The Unimation Puma Servo System”,
CSIRO Division of Manufacturing Technology,
Preston, Australia.

[9] Trident Robotics and Research, Inc., 2516 Matterhorn

Drive, Wexford, PA 15090-7962, (412) 934-8348,
http://www.cs.cmu.edu/~deadslug/puma.html

[10] Quanser Consulting, 102 George Street, Hamilton,
Ontario, CANADA L8P 1E2, Tel: 1 905 527 5208,
Fax: 1 905 570 1906, http://www.quanser.com.

[11] QSSL, Corporate Headquarters, 175 Terence
Matthews Crescent, Kanata, Ontario K2M 1W8
Canada, Tel: +1 800-676-0566 or +1 613-591-0931,
Fax: +1 613-591-3579, Email: info@qnx.com,
http://www.qnx.com (QNX web site)

[12] B. Armstrong, O. Khatib, J. Burdick , “The Explicit
Dynamic Model and Inertial Parameters of the PUMA
560 Arm”, Proc. IEEE int. conf. Robotics and
Automation 1 (1986) pp. 510-518

[13] P. Corke, “The ARCL Robot Programming System”,
CSIRO Division of Manufacturing Technology.

[14] P. Corke, P. Dunn, and R. Kirkham, “An ARCL
Tutorial”, CSIRO Division of Manufacturing
Technology, Preston, Australia, 1992.

[15] J. Neider, T. Davis, and M. Woo, “OpenGL
Programming Guide”, Addison-Wesley Publishing
Company, New York, 1993.

