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Abstract 

Robotic systems are well suited for decontamination and 
decommissioning (D&D) tasks in hazardous environments. 
Advanced semi-autonomous telerobotic solutions for D&D tasks 
go beyond simple video-based interaction and include virtual 
reality (VR) interfaces and flexible sensor integration. The 
capability of those systems range from real-time control tasks to 
graphical user interface (GUI) components utilizing video and 
VR. This paper describes QRobot, a PC-based system for 
telerobotic D&D operations. The system integrates hardware 
interfacing, real-time joint level control, sensors, tool control, 
networking and task level programming as well as video and VR 
based operator interfaces. The system demonstrates that the 
personal computer (PC), a cost effective and widely used 
computing platform, is well suited to the integration of real-time 
control tasks and advanced user interfaces. An experimental 
section demonstrates the system’s functionality by using an 
example workpiece as the subject of a D&D operation. 

1 Introduction 

The U.S. Department of Energy (DOE) is facing the 
decontamination and decommissioning of a high number of 
surplus facilities. These facilities often contain radioactive or 
other hazardous material. Current technologies are often labor 
intensive, time consuming, expensive, or they unnecessarily 
expose workers to the hazardous material. The DOE is looking 
for new and innovative technologies that allow D&D operations 
to be faster, safer, and more cost-effective. Telerobotic systems 
provide a good solution to this problem. They allow robots to be 
remotely controlled from an operator console and provide visual 
feedback to the operator. In basic systems, an operator controls 
the robot directly (e.g. with a joystick) and receives video 
feedback [1]. Performing a remote disassembly is a complicated, 
often repetitive task, which requires skilled operators. Therefore, 
much of the ongoing research focuses increasingly on the 
development of semi-autonomous systems. These systems 
perform higher level tasks, such as removing a bolt, triggered by 
the operator. Furthermore, VR based operator interfaces are 
desired to simplify interaction with the system. 
This paper describes how the QRobot joint level control [2] was 
extended to a complete semi-autonomous robot control system 
for D&D operations. QRobot is the robotic part of the research 
being conducted under DOE Grant DE-FG07-96ER14728, 
entitled “Advanced Sensing and Control Techniques to Facilitate 
Semi-Autonomous Decommissioning of Hazardous Sites” [3]. It 
is a purely PC based system that integrates the following 
components: 

• A joint level control and a trajectory generator with a high 
level programming interface for Puma manipulators. 

• A 3D OpenGL-based hardware-accelerated robot simulator. 

• Both video based and VR based operator interfaces. 

• Teleobservation programs. 

• Interfacing of different sensors. 

• Control of different robotic end-effectors. 
The experimental section of this paper documents the capability 
of the QRobot system to perform a sample D&D operation. 

2 Motivation for Developing a PC Based 
System 

The different components of an advanced semi-autonomous 
telerobotic system have different hardware and software 
requirements: 

• The joint level control task and the trajectory generator 
require hard real-time performance. 

• The GUI needs to integrate VR and video techniques. 
Hardware accelerated 3D rendering is required for the VR 
interface. 

• Networking capabilities are required in order to locate the 
robot control hardware remotely from the operator console. 
Networking is also required if a multiprocessor architecture 
is used to divide the work among multiple computers (e.g. 
video capture on one PC, robot control on another PC, etc.) 

The above requirements usually lead to the integration of 
proprietary solutions and expensive hardware platforms. As an 
example, consider an RCCL based system. The software consists 
of a robot control library (RCCL [4]) running on a Sun 
workstation, Moper running on a LSI 11/2 processor, and 
firmware joint level control running on digital servo boards 
inside the Mark II [5]. Additional hardware required includes an 
SBUS to VME bus adapter and a VME card cage. The closed 
architecture of the Mark II controller prevents the 
implementation of new, state-of-the-art control algorithms [2], as 
well as the integration of sensors such as cameras into the 
control loop. The heterogeneous architecture of this type of 
system leads to a higher complexity of integration and higher 
costs. 
QRobot is entirely PC-based. The entire computational 
functionality of the system, including the joint level control, is 
implemented exclusively as PC software. Neither a dual 
processor architecture (like PC/digital signal processing boards 
solutions) nor special controller hardware (such as the Mark II’s 
digital servo boards) is necessary.  
This system has the following advantages: 

• The system is cost-effective, because PCs and their 
components are less expensive than proprietary controllers or 
traditional Unix workstations. 

• The system has a simpler architecture, since the additional 
effort to integrate completely different hardware components 
(such as VME cards with an SBUS computer) is not 
required. 

• The system is more flexible. To modify or extend the system, 
only a change to PC source code is necessary. 
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• The PC is a widely known and technically advancing 
technology. Many powerful software packages as well as a 
great variety of interface boards are available for the PC. 

There are two developments that allow a PC based system to 
fulfill the different hardware and software requirements stated 
above. First, the advent of high-speed PC CPUs provides 
computing power similar to or exceeding Unix workstations or 
special purpose computers such as DSP boards [6]. Second, hard 
real-time PC operating systems (OSs) are able to execute real-
time tasks (such as joint level control and trajectory generation) 
as well as non real-time tasks (such as GUIs) on one CPU [7]. 

3 Overview of the Disassembly System 

Figures 1, 2 and 3 show the software and hardware components 
that are distributed across three PCs. The VR Operator Interface 
PC runs Windows NT, while the Robot Control PC and the 
WebCam PC run QNX, a real-time OS. The VR Operator 
Interface and the Robot Simulator are integrated into one 
Windows NT program. The Video Operator Interface contains 
the actual disassembly program and communicates with the VR 
Operator Interface over Internet Domain TCP/IP sockets. 
The Disassembly Program issues high level commands to ARCL, 
a robot control library that serves as the programming interface 
and as the trajectory generator. ARCL generates a stream of 
setpoints that are fed into the Joint Level Control. Observation 
Windows provide visual feedback of the D&D operation. They 
show a continuously updated image from one of the video 
cameras. Multiple observation windows can be used with 
different video cameras. The WebCam System allows video 
feedback over the World Wide Web by using a standard web 
browser. The camera, the pan/tilt unit (PTU) and the zoom lens 
of the WebCam System are also accessible from the observation 
windows running on the Robot Control PC. Special programs, 
called Hardware Servers, are responsible for accessing the PC 
boards (e.g. PTU server, MultiQ server, etc.) Control Servers 
implement control algorithms (e.g. zoom lens control, robot joint 
level control.) Applications use Clients to communicate with 
servers. 
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Figure 1. The VR Operator Interface PC 

Different PC boards are used in the system: Quanser’s MultiQ 
board and ServoToGo’s S8 board for digital and analog I/O, the 
Imagenation PXC200 and Matrox Meteor frame grabbers for 
video capturing, and a custom board for interfacing the 
force/torque (F/T) sensor. The main hardware component is a 
Puma 560 Manipulator. A hardware retrofit interfaces the 
encoders and potentiometers of the Puma and the power 
amplifiers of the Mark II directly to an I/O board. The F/T 
Sensor and the Toolchanger are mounted on the Puma’s wrist. A 
tool rack provides three tools for the disassembly: a Gripper, an 
Air Motor for bolt removal, and a Laser Diode to simulate torch 
cuts. The vision system consists of two cameras. The first, called 
the Overhead Camera, is mounted directly over the Puma’s 
workspace and is connected to the Robot Control PC (Figure 2.) 

The second camera, called the WebCam, is mounted on a PTU, 
equipped with a zoom lens, and is connected to the WebCam PC 
(Figure 3.) 
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Figure 2. The Robot Control PC 
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Figure 3. The WebCam PC 
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4 Hardware Components 

4.1 The Puma 560 Retrofit 

The standard controller for Puma manipulators is the VAL-II 
based Unimation Mark II. Six MC6503 based digital servo 
boards perform the joint level control [5, 8]. Implementing the 
control as a PC program allows the development of arbitrary 
user-defined joint level controls and the integration of sensor 
information into the control loop. To achieve this, a retrofit of 
the Mark II hardware is necessary. 
The hardware retrofit directly interfaces the encoders and 
potentiometers of the Puma and the power amplifiers of the 
Mark II directly to an PC I/O board. The TRC boards (TRC004, 
TRC006 and the TRC041 card cable set), produced by Trident 
Robotics and Research Inc. [9], were initially used for this 
purpose [2]. The TRC boards provide a simple but proprietary 
solution. That is, the user is dependent on one source of 
hardware and software – Trident Robotics Research. In order to 
make the system more flexible and less dependant on one 
vendor’s hardware, the next step was to replace the TRC boards 
with generic interface boards. Quanser Consulting’s MultiQ 
board [10] was selected to replace the TRC004 and TRC006 
boards. It was necessary to develop an additional simple 
interface board to connect the MultiQ board to the amplifier 
circuits of the Mark II. This interface board contains 
preamplifiers and filtering circuitry for the noisy potentiometer 
readings. The TRC041 cable card set was replaced by an in-
house developed cable card set. 
The MultiQ boards do not support latching of digital inputs, a 
feature that the TRC004 board provides for use with the Puma 
560 encoder index pulses, required during the robot calibration 
procedure. To solve this problem, the MultiQ hardware server 
simulates the latching in software. 
To demonstrate that the architecture is flexible enough to easily 
accommodate other motion control interface boards, another 
Mark II controller was retrofitted with a ServoToGo (STG) S8 
interface board instead of a MultiQ board. A problem occurred 
when using the encoders: the encoder channels of the MultiQ 
board operate in the reverse direction than those of the STG 
board. To compensate, the encoder values are reversed in the 
STG hardware server. 

4.2 End-Effector Hardware 

The D&D tasks require various tools and sensors. To 
accommodate these tasks, an ATI Industrial Automation Gamma 
30/100 F/T sensor is mounted at the end of the robot arm. The 
FT sensor is interfaced to the PC via an ISA bus controller 
board. 
The toolchanger is mounted on the FT sensor. It is a Light 5 
Robotic Tool Changer, also from ATI. It contains 10 electric and 
6 pneumatic pass-through ports, for electrical and pneumatic 
connections on the end-effector. The custom-built tool rack 
provides space for three tools. 

• An MMR-002 air motor, from Micro-Motor Inc., is used for 
bolt removal. A Gator Grip socket tool is mounted on the end 
of the air motor. The Gator Grip is a universal socket that 
automatically adjusts to varying bolt sizes, allowing bolt 
removal operations to proceed even with several millimeters 
of positioning error. 

• A standard pneumatic gripper is used to remove stuck bolts 
and the motor end cap. 

• A laser diode is used to simulate a cutting torch. 
Electrically controlled air valves actuate the tool changer, the 
gripper and the air motor. Digital output lines of the MultiQ 
board control all tools. 

4.3 Observation System 

The observation system consists of two Pulnix TMC-7 cameras. 
One is connected to a Matrox Meteor PCI bus frame grabber, the 
other uses an Imagenation PXC200 PCI bus frame grabber. One 
camera is mounted in a fixed direction above the workspace. The 
other camera is mounted on a Directed Perception PTU, model 
PTU-46-17.5. The PTU is connected to the PTU controller (a 
micro controller based constant acceleration open loop control), 
which is in turn connected to the PC via an RS232 serial port. 
The PTU mounted camera also uses a zoom lens. The motors 
and potentiometers of the zoom lens are connected to a custom 
interface board (containing amplifiers and voltage dividers), 
which is then connected to a MultiQ for A/D and D/A. 

5 Software Components 

5.1 The Multitasking and Communication 
Architecture 

The system’s functionality is split into many cooperating tasks. 
For these tasks to work seamlessly together, the OS must fulfill 
certain requirements. It must provide priority based deterministic 
CPU scheduling to ensure that high priority real-time tasks (e.g. 
the joint level control) are not delayed by low priority non real-
time tasks (e.g. GUIs). It also must provide robust interprocess 
communication (IPC) mechanisms so that the cooperating tasks 
can synchronize and communicate. 
The real-time microkernel based OS QNX, developed by QSSL 
[11], meets all of these requirements. Unlike real-time extensions 
such as RT-Linux or Hyperkernel for Windows NT, QNX is a 
true microkernel real-time OS. One benefit of this is that the 
whole spectrum of OS functions, including file access and 
networking, can be used in real-time tasks. 
Client/Server Architecture. The system utilizes two types of 
servers. Hardware servers are used to access hardware. Control 
servers implement a control algorithm. Both types of servers are 
separate programs that usually cycle at a fixed rate. To exchange 
data with a server (e.g. to send setpoints to a control server or to 
read analog inputs from a hardware server), a program is linked 
with the appropriate client library. The client library uses shared 
memory or message passing to communicate with the server. 
Message passing is a QNX IPC mechanism that is very flexible 
because it is network transparent. This means that the same 
client code will work with a server whether it is located on the 
same PC or a remote PC. For example, the video client located 
on the Robot Control PC can connect to the video server of the 
overhead camera, also running on the Robot Control PC. 
Alternately, it can connect to the WebCam Video Server, which 
is running on the WebCam PC. This mechanism allows great 
flexibility in distributing the resources of the system. 
Another advantage of the client/server concept is that multiple 
clients can use the same server. In this way, resources can be 
accessed from multiple tasks. For example, the video clients of 
the operator interface, the observation windows and the 
WebCam can all use the overhead camera video server 
simultaneously. Since QNX message passing provides 
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synchronization implicitly, concurrent requests are automatically 
serialized. 
Finally, the interface between client and server adds a level of 
abstraction to the hardware interfacing. To use different I/O 
boards different servers are implemented, but the same generic 
client can be used. The communication protocol between client 
and server does not change. For a client to use a different I/O 
board, a different server must be started, but no client code needs 
to be changed or recompiled. 
All clients and servers are written in C++. The MultiQ and the 
STG S8 server perform digital and analog I/O at a fixed 
frequency. A generic I/O board client is used to communicate 
with either of these servers. The Matrox Meteor Server and the 
Imagenation PXC200 Server capture frames on demand. A 
generic video client is used to request and receive frames from 
either server. The F/T sensor server is interfaced to the ISA F/T 
sensor controller board. It reads the force and torque values 
continuously and provides them to the F/T client in a shared 
memory space. The PTU server controls the PTU over the 
RS232 serial port. It receives messages from the PTU client that 
contain the desired angles and issues move commands to the 
controller. The zoom lens server receives the desired zoom factor 
from the zoom lens client and uses a proportional position 
control to set the focal length of the lens.  
The timer server is a special server. It provides the clock for all 
other servers, which guarantees synchronous behavior of the 
different tasks. 

5.2 Joint Level Control 

The joint level control is implemented as a QNX program. This 
is a very flexible solution, since the control algorithm can be 
modified directly by changing and recompiling the control 
program. The ever-increasing computing power of PCs allows 
the implementation of more complex control algorithms. In 
addition, it is now possible to include arbitrary sensor 
information in the joint level control loop, which allows the 
implementation of advanced sensor-based control algorithms 
such as force-based control or direct visual servoing. 
The joint level control used in the D&D system was developed 
using QMotor [6], which is an environment for PC based control 
program development and implementation. The control program 
implements a PD controller with static and coulomb friction 
compensation for all joints and gravity compensation for the 
second and third joint. Joint velocities are manufactured via a 
backward difference method and low pass filtered [2]. The joint 
level control program works as a server and receives the stream 
of setpoints via message passing from the joint level control 
client, which is part of the QRobot version of ARCL. The 
control can be switched to a zero gravity mode. In this mode, the 
control only compensates for the gravity on the robot links 
instead of servoing to desired setpoints [12]. The robot can be 
freely moved by hand in this mode, which is used to teach end-
effector positions and orientations with the teachpendant 
program. 

5.3 Trajectory Generation and Robot Programming 
Interface 

To achieve the goal of an entirely PC-based system, a high-level 
robot control API and trajectory generator package for the PC is 
required. As there is no such package available for QNX, the 
quickest solution is a port from a different platform. One of the 
most sophisticated and well-known high level robot control 

libraries is RCCL. John Lloyd, one of the developers of RCCL, 
had unsuccessfully tried to port RCCL to QNX. For this reason, 
RCCL was not considered for use in this project. 
The Advanced Robot Control Library (ARCL), developed by 
Peter Corke at CSIRO [13][14], provides similar functionality to 
RCCL, although in a much more limited fashion. ARCL seemed 
to be more suitable for a QNX port, because its modular 
architecture separates platform dependent and platform 
independent parts. ARCL was developed for Unix workstations. 
Porting ARCL to QNX and integrating it with the QRobot 
system required significant effort. This effort included making 
the C source code C++ syntax compliant, debugging the existing 
ARCL source code, developing the platform specific part of 
ARCL (called the ARCL machine interface, or AMI), and 
embedding the ARCL modules into the real-time environment of 
QNX and the client/server architecture. 
The main challenge of porting ARCL was writing the AMI for 
QNX. The AMI is the platform dependent module that contains 
functions for multitasking, timing and hardware interfacing of 
the manipulator. Two problems occurred when developing the 
AMI for QNX. First, the architecture of the AMI requires that 
both the trajectory generator task and the user program task share 
variables. This can be implemented either by using shared 
memory between these tasks or by using threads. Since ARCL 
was not designed to take advantage of shared memory, the 
development of a special memory manager would have been the 
only solution. Threads, the other approach, are multiple instances 
of a process that share the same address space. QNX supports 
threads, but in a limited fashion, and not all library functions are 
“thread-safe”. Tests showed that the thread-based solution, 
which is much easier to implement than the shared memory 
manager, was adequate. 
Semaphore management posed the other significant problem. 
QNX semaphores do not behave in accordance with the ARCL 
specification. This was rectified by modifying the way ARCL 
uses semaphores. In addition, ARCL expects the OS to destroy 
all semaphores at program termination, which is not the case 
with QNX. Consequently, over time, the system runs out of 
semaphores. To solve this problem, a semaphore manager was 
added to the AMI to keep track of the semaphores in use and to 
destroy them as the program terminates. 
To integrate ARCL into the QRobot system, the QNX/QRobot 
AMI was constructed to contain the following functions: 

• A joint level control client sends the trajectory to the joint 
level control server. 

• Functionality was added to connect to the robot simulator 
running on the Windows NT PC. Sockets were used as the 
communication mechanism. A 100Mbps full-duplex point-
to-point Fast Ethernet link proved to be fast enough to ensure 
that the robot simulator does not fall behind the trajectory 
generator. The protocol is simple: the data sent contains the 
stream of setpoints generated by the trajectory generator. 
There are two modes of operation, test mode and standard 
mode. Test mode allows running robot control programs with 
the simulator alone, without accessing hardware. This is 
useful for debugging robot programs without the risk of 
damaging the robot. In standard mode, the trajectory is sent 
to both the robot simulator and to the joint level control, so it 
is possible to compare the movement of the real robot with 
the simulator. A communication channel in the other 
direction, from the robot simulator to ARCL, was added to 
allow the virtual operator interface (which is part of the robot 
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simulator) to send disassembly commands to the task level 
program. 

• Force and torque information is used to trigger an emergency 
stop to minimize damage from collisions between the end-
effector and the workspace. 

Rather than using ARCL’s limited functionality to control tools 
(there is only a function to control the gripper), a C++ class was 
developed for each tool. The tool classes use I/O board clients to 
control the tools. 
Although the port of ARCL achieved satisfactory results, it is not 
an ideal solution. The use of threads is not 100% safe, since not 
all QNX library functions are “thread-safe”, although we never 
identified any crashes that could be attributed to threads. If a user 
chooses to use a non thread-safe function in one of his programs, 
the behavior of the system is undefined. 

5.4 Robotic Utility Programs 

To facilitate the use and calibration of the D&D system, a set of 
robot utility programs was developed. 
Teachpendant: To learn the end-effector positions and 
orientations used in the D&D operation, a teachpendant program 
was developed, see Figure 4. 
 

 

Figure 4. The QRobot Teachpendant 

The teachpendant uses the zero-gravity mode of the joint level 
controller, which allows the user to easily push the robot around 
in the workspace. Once a position and orientation is found, it can 
be stored under a given name in a position list. It is possible to 
leave teach mode at any time and move the robot to previously 
taught positions. The position list can be stored in an ASCII file 
for later use in the teachpendant, or for use from an ARCL 
program. 
PotVal: The PotVal utility performs the initial calibration 
procedure of the Puma 560 that relates joint potentiometer 
readings to encoder readings. 
PumaCal: The PumaCal utility performs encoder calibration 
after power up of the manipulator. It determines the current 
position of the robot by using potentiometers and index pulses. 
This utility is similar to RCCL’s pumacal utility [4], but 
performs the calibration in only a fraction of the time. 

5.5 The Disassembly Program 

A motor is used to demonstrate a simple disassembly. The 
objective is to remove the cap of the motor. Figure 5 shows the 
steps performed by the system: 
1. Remove the first bolt. The gator grip is used to unscrew the 

bolt. Since the bolt usually stays in the housing, the 
operator has the additional option to remove the unscrewed 
bolt with the gripper and drop it into a container. 

2. Remove the second bolt in the same fashion as described in 
step 1. 

3. Perform a torch cut. In the experiment, the torch is 
simulated by a laser diode. 

4. Remove the cap with the gripper and put it on the table. 
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34

  

Figure 5. Steps to Disassemble the Motor 

The disassembly program is written in C++. For each 
disassembly step, via points are determined with the 
teachpendant program and saved to a file. The disassembly 
program reads this file and creates transformations and position 
equations for each via point. The position equations are the input 
to the ARCL move function calls. Each disassembly step consists 
of picking up the right tool from the tool rack, performing the 
operation, and returning the tool to the rack. Some special 
functions are defined to allow the operator to intervene in case 
the system fails to complete a step. These functions include 
manually getting or returning a tool and manually locking or 
releasing a tool.  

5.6 The Operator Programs 

Four operator interface programs offer different control and 
feedback functions. Observation windows and the video operator 
interface run on the same PC as the robot control, but at a lower 
priority. They use Photon, the windowing system for QNX. 
Photon provides functionality similar to the X Window System 
and Xt. To accelerate GUI development under Photon, a C++ 
class library (CPhoton) was developed. 
Observation Windows. The observation window (see Figure 6) 
provides live visual feedback from a video camera. When using 
the WebCam, the observation window offers additional 
functionality. Clicking in the image centers the PTU about that 
point. The buttons at the bottom of the window control the 
WebCam’s zoom lens. 
It is possible to start multiple observation windows and connect 
them to the same or different cameras. Since the observation 
windows use message-passing based client/server 
communication, the camera servers can be distributed over 
multiple PCs. The disadvantage of message passing is reduced 
speed in the image transfer. Depending on the PC’s performance, 
image size, image color depth, network traffic, and the video 
display driver, the observation window displays 1-5 frames per 
second. 
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Figure 6. Observation Window 

Web Camera. The WebCam is a World Wide Web based visual 
feedback, with similar functionality to the observation windows. 
The Apache web server starts a CGI program whenever the web 
page is accessed. The request for the web page contains the 
desired pan/tilt angles and the desired zoom factor as parameters. 
The CGI program moves the PTU to the desired position, sets 
the zoom factor, and captures an image. This image is converted 
to JPEG format, and a web page is dynamically created to show 
the image. The client/server architecture allows multiple 
observation windows and any number of web browsers to 
request images at the same time. The advantage of the WebCam 
is the accessibility from any Internet connected computer. The 
disadvantage is the lack of continuous and fast updates of the 
image. 
Video Operator Interface. The video operator interface provides 
even unskilled operators an easy-to-use interface to control the 
disassembly tasks. The video image is used to trigger 
disassembly operations. The operator moves the mouse cursor 
over a certain part of the motor that he wants to disassemble. The 
operator interface then displays a pop-up menu with a list of 
disassembly options. For example, when the operator moves the 
mouse over the motor end cap, the end cap is highlighted, and a 
menu pops up with the menu item “Remove Cap” (see Figure 7). 
After the operator selects an operation, the program begins to 
perform the task and shows progress information in a dialog. As 
the disassembly is being performed, the operator is able to 
supervise the operation in the observation windows. In case the 
disassembly of a part is unsuccessful, the operation can be 
repeated. 
 

 

Figure 7. Video Operator Interface 

The image-based selection of disassembly operations is 
convenient for the operator, but it also requires that the system 
know where the parts of the object are located in the image. The 
Image Processing group at Clemson University is investigating 
the use of advanced image processing and 3D-object 
virtualization techniques to automatically identify and locate 
these parts for the disassembly task [3]. This research is not 
addressed in this paper. To demonstrate the basic concept of the 
operator interface, the coordinates are manually determined in 
the current system.  
Virtual Operator Interface/Robot Simulator. The video operator 
interface works fine with a workpiece such as the motor and the 
overhead camera. However, using different camera perspectives 
or more complex workpieces can result in hidden parts that can 
not be viewed and selected by the operator. For instance, the 
front perspective of the motor would not show the second bolt at 
the back of the motor. VR based operator interfaces overcome 
this problem. Using a VR interface the operator is able to 
navigate within the virtual scene and view parts from different 
angles. The QRobot virtual operator interface is integrated into 
the robot simulator. 
 

 

Figure 8. The Virtual Operator Interface/Robot Simulator 

Figure 8 shows a screenshot of the robot simulator. Since there 
are no hardware accelerated 3D graphics libraries available for 
QNX, the program runs under Windows NT and uses OpenGL, a 
standard 3D graphics library [15]. 
The 3D scene consists of two Puma 560 robots, the toolrack and 
the workpiece. The main window is split into three parts that 
show the scene from different perspectives. In each sub-window, 
the operator can navigate by using the mouse, selecting and 
defining custom viewpoints or selecting the end-effector view. 
The latter option simulates the view of a camera mounted on the 
end-effector. The level of detail in the display can be reduced to 
accelerate the display. 
While the disassembly program is running, ARCL forwards the 
trajectory information to the robot simulator. The VR operator 
interface requires that the video based operator interface be 
running, since the video based operator interface is linked to the 
actual disassembly program. The convenient side effect is that 
both operator interfaces work hand in hand (i.e. the disassembly 
task can be started from either.) 
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A special technique of 3D programming, called object picking, 
gives the operator functionality similar to the video based 
operator interface. Moving the mouse cursor over parts of the 
motor highlights these parts. Clicking on the parts displays 
menus with disassembly options. Once the operator selects a 
disassembly option, the software encodes this operation into a 
command word, and sends it to the video based operator 
interface, which initiates the operation. This data transport uses 
the same TCP/IP connection that is used to send the trajectory 
information. Progress reports are also sent back to update the 
progress dialog box as shown in Figure 8. 
The disadvantage of the current version of the robot 
simulator/operator interface is that the scene is hard-coded in the 
simulator. Changing the scene is not trivial and requires 
extensive programming effort. However, this compromise 
establishes a working system at this stage of the project. 

6 Experimental Results 

There are three aspects of the experiment. The first aspect is the 
reliability of the control system and the mechanical parts. The 
system was successful in repeating the disassembly multiple 
times without any problems. The joint level control was capable 
of precisely moving different tools of different weights. Figure 9 
shows the desired position trajectories for links 2 and 3 for the 
bolt removal task in the top graphs. 
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Figure 9. Trajectories and Tracking Errors for the Bolt 
Removal 

The middle graphs are the tracking errors. The bottom graphs 
show the tracking errors for a test run without the bolt actually 
being present. The actual bolt removal happens from t = 20 sec 
to t = 30 sec. Comparing the tracking errors in the middle and 
bottom graphs shows that the effect of the force created by 
removing the bolt does not affect the control significantly. 
The second aspect is the usability and reliability of the system 
used by an untrained operator. The experiment shows that both 
video and VR based operator interfaces provide an intuitive way 
to control the D&D operation. Only a few mouse clicks are 
necessary to guide the complete disassembly. Problems occur 
when the operator needs to recover from a system failure or a 
handling error. Generally, the capabilities of aborting operations 
and returning to the initial state are limited. Often, the robot, the 
tools, or workpieces have to be moved back manually to initial 
positions. 
Finally, the most interesting part is the stability of the GUIs and 
the real-time control programs running together. The system 
shows high stability in this issue. For example, it is possible to 
open many observation windows while the D&D task is in 
progress. The observation windows slow the GUIs down, but 
they do not negatively impact the control or disassembly tasks. 

7 Conclusion 

The QRobot system described in this paper demonstrates the 
feasibility of using a PC for the various tasks required in 
telerobotic semi-autonomous D&D operations. It was shown 
how real-time tasks, such as the joint control, can be integrated 
with non real-time tasks, such as a GUI, on a single cost-
effective hardware platform. The client/server concept, using a 
modern real-time OS as its platform, provides a flexible method 
of communication for these tasks. Priority based scheduling 
allows complex real-time control programs to coexist with low-
priority GUIs. The operator interfaces and the teleobservation 
programs provide an easy-to-use telerobotic operator 
environment. 
Future research is motivated by the limitations of the system, 
which originate in its software components and its architecture. 
ARCL as a high-level control library is not a satisfactory, robust, 
general-purpose solution. Although QRobot is entirely PC based, 
it still uses two OSs: QNX (for all functions except the 3D robot 
simulator) and Windows NT (for the 3D robot simulator). This 
introduces higher complexity and costs. It would be desirable to 
have all components running under the same OS. The system 
was developed by integrating different software components. All 
components have been specifically modified to work together, 
which leads to a static architecture. For example, extending the 
system to a different robot type would result in modifications of 
ARCL, the joint level control, the robot simulator and the way 
they communicate. The biggest problem is the limited flexibility 
in adapting the system to different applications. Basically, 
certain parts of QRobot (e.g. the robot simulator, the GUIs, the 
tool clients) are specific to the D&D example of the motor 
disassembly. Adapting the system to a different application 
requires some knowledge of its internal workings. 
To overcome these problems, the current research targets the 
specification, design, and implementation of a new robot control 
environment. Rather than being a specific robot control library 
like RCCL or ARCL, it would be an open framework to manage 
different mechatronic components that work together in D&D 
operations and other robotic applications. The framework would 
be object oriented, using the language C++. Objects would 
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represent the different components of the system, for example 
the trajectory generator, manipulators, tools and sensors. Object 
oriented programming techniques like inheritance can be used to 
reuse code and easily extend the system without knowing its 
internals, thereby avoiding recompiling the whole system. The 
framework would provide functionality to create and delete 
objects, communication and relationships between objects, and 
real-time task management. 
The proposed research would address the following challenges: 

• Design of an open system for different applications and 
research areas. 

• Design of a flexible system that allows the distribution of 
objects over multiple PCs and uses real-time communication 
over a network. 

• Design of a system architecture that is highly platform 
independent. 

• Implementation of the complete system under one OS to 
achieve a single PC, single OS solution. 

This new robot control environment would use the concepts and 
advantages of a purely PC based system described in this paper, 
but improve the design to utilize state-of-the-art software 
development tools and techniques. The resultant system would 
allow researchers to focus on their actual application rather than 
the technical framework. 
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