
QRobot – A Multitasking PC Based Robot Control System

N. Costescu, M. Loffler, E. Zergeroglu and D. Dawson

Department of Electrical and Computer Engineering
Clemson University / 105 Riggs Hall

Clemson, SC 29634-0915
Fax: (864) 656-7220
Tel: (864) 656-7708

ncostes@eng.clemson.edu
loffler@eng.clemson.edu
ezerger@eng.clemson.edu

ddawson@eng.clemson.edu
http://ece.clemson.edu/crb

Submitted to the
Conference on Control Applications

Trieste, Italy
September 1998

Keywords: Real-time, Control, Robotics, PC, QNX, Mechatronics, RCCL, ARCL



1

Abstract
In this paper, we describe QRobot, a low level real-time PC-based system for controlling PUMA
robot manipulators. Specifically, we illustrate how a standard PUMA controller can be retrofitted
with interface boards that allow it to be connected to an industry standard PC. All computational
units are removed from the existing PUMA controller, and the PC assumes the role of computing
the control strategy.  A low level control is implemented for a PUMA 560 manipulator. The low
level control software is then connected to two high level software environments (RCCL and
ARCL) for purposes of high level trajectory generation, kinematics, inverse kinematics, etc.
Excellent tracking results are obtained with both systems. Some limitations of the two high level
software environments were discovered during the development of QRobot. These limitations
provide the motivation for the future development of a new object oriented robot control system.

1 Introduction
Over the last ten years, the U.S. Department of Energy has become increasingly concerned with
the decontamination and decommissioning (D&D) of numerous laboratory/production facilities
that contain hazardous materials. Since the use of telerobotic systems provides a means for
achieving human performance capabilities without human exposure, many researchers have
proposed the use of advanced sensor-based telerobotic systems to accelerate ongoing D&D
operations and overcome the potential safety problems. Indeed, there are probably few problem
domains that are more appropriate candidates for telerobotic technology than D&D operations.
To facilitate the development of low cost teleoperated systems, we are currently investigating the
feasibility of designing a PC-based robot control system for PUMA robot manipulators as part of
a Semi-Autonomous Decommissioning of Hazardous Waste Project for the U.S. Department of
Energy [1].

A standard PUMA robot manipulator is controlled by a VAL-II based Unimation Mark II
controller.  There are several disadvantages or limitations of the VAL-II based Mark II controller
system, many of which are attributable to the age of the product. To overcome some of the
disadvantages of the VAL-II based Mark II controller system, RCCL/RCI (Robot Control C
Library/Real Time Control Interface) [2] was developed; however, RCCL/RCI does not allow
for modification of the low level control strategy or the incorporation of additional sensor data
into the low level control system. To overcome some of the limitations of RCCL/RCI, we
propose the development of a flexible PC-based PUMA robot manipulator control environment
that would allow the user to change the low level control strategies and use a wide variety of
sensors in the trajectory generator and low level control.

The combination of the following three technical developments has made the PC-based PUMA
retrofit possible: i) the advent of high-speed PC CPUs, ii) the availability of a hardware interface
for the existing Mark II controller, and iii) the availability of hard real-time operating systems for
PCs.  The proposed PC-based control system involves a hardware retrofit of the Mark II
controller, low level control software development, and high level application program interface
and trajectory generation software development.
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2 Mark II / Val-II System
A standard PUMA Robot Manipulator is controlled by a VAL-II based Unimation Mark II
controller. Basic knowledge of the Unimation controller architecture is necessary to understand
the disadvantages and shortcomings of this aging architecture (for more details on the controller
see [3]). To provide the necessary background on the Unimation controller, Table 1 lists the
major components of the system, and Figure 1 depicts a block diagram of the Mark II control
system.

1 DEC LSI-11/2 computer with ADAC parallel interface board, DLV11-
J serial interface board, CMOS board, and EPROM board

2 Servo interface board
3 Six 6503 based digital servo boards
4 Two power amplifier assemblies
5 Power amplifier control board
6 Clock/terminator board
7 Input/output interface board
8 Two power supplies
9 High power function board
10 Arm cable board

Table 1 – Major Components of the Mark II Control System
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Figure 1 – VAL-II Based Mark II Control System Block Diagram
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In this paper, we will primarily focus on the disadvantages and drawbacks with regard to
components 1-3 in Table 1; hence, a brief description of these components and some related
subsystems is given below.

LSI-11/2 Computer: The DEC LSI-11/2 computer is based on a 16-bit processor with up to 32K
words of memory.  This 1970’s era processor [4] is used to compute the setpoints which make up
the desired robot joint level trajectory.  This processor communicates via the DLV11-J serial
interface card to a floppy disk drive, a teach pendant, and a serial terminal.  Commands are
usually entered at the terminal or the teach pendant.  The setpoint can be updated by the LSI-11/2
based software at one of several user selectable periods.  The default update period is 28ms.
Each update period new setpoints for each joint are transferred from the LSI-11/2 to the servo
interface board, which in turn distributes the appropriate setpoint to each digital servo board.

Digital Servo Boards: There are six digital servo boards, one per joint of the robot manipulator.
Each servo board consists of a 6503 8-bit 1MHz microprocessor with 2048 bytes of EPROM and
128 bytes of RAM, a counter/timer, and some parallel input/output capabilities [5].  Each
processor implements the position loop for its joint at about 1KHz.  Computations are performed
using fixed-point triple precision (24 bit) arithmetic.  A discussion of the low level control loop
is immaterial to this paper and can be found in [5].  It is sufficient to say that it is a fairly
straightforward computation which can be performed by the 6503 in approximately 924µs.

Peripherals: Connected to the Mark II controller are a floppy disk drive, a teach pendant, and a
serial terminal.  Programs entered from the terminal can be stored on the floppy drive.  The teach
pendant is used to move the robot manipulator directly either in Cartesian or joint space, and to
program motions by moving the robot manipulator as opposed to entering desired end-effector
configurations from the terminal.

Mechanical System: The final and most important piece of hardware is the PUMA 560 robot
manipulator.  This robot is a six degree of freedom revolute manipulator with a 2.2 pound static
payload capability.  PUMA robot manipulators are popular in industrial applications due to their
accuracy, repeatability, and reliability.  These robots are popular in academic settings because
previously owned units can be obtained at reasonable prices.

Software: The VAL-II software for the Mark II controller allows the user to program robot
motions using an English-like syntax.  Once a VAL-II command is issued from the terminal, the
LSI-11/2 computer computes the joint level trajectory and sends setpoints to the digital servo
boards every 28ms until the motion is complete.  The VAL-II software then notifies the terminal
that a new command may be entered.

Disadvantages: There are several disadvantages or limitations of the VAL-II based Mark II
controller system. The obsolete LSI-11/2 processor based computer with its limited
computational abilities and memory does not permit a sophisticated trajectory generator to be
implemented. The digital servo boards with their even more limited 8-bit 6503 processors and
128 bytes of RAM limit the complexity of the low level control that can be implemented.  The 1
KHz sampling frequency is also fairly low by modern standards.  Entering programs from a
serial terminal and storing them to a low capacity floppy drive is a cumbersome method of
software development, to say the least.  Perhaps the greatest disadvantage is the fact that this
system does not allow integration of arbitrary sensors into the trajectory generator or low level
control loop.  For example, with a VAL-II based system it is not feasible to implement a visual-
based servo control architecture.
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3 Overview of RCCL System
RCCL/RCI (Robot Control C Library/Real Time Control Interface) overcomes some of the
disadvantages of the VAL-II based Mark II controller system for PUMA Robot Manipulators.
An RCCL upgrade to a VAL-II based system consists of both hardware/software upgrades and
retrofits and requires the purchase of some new hardware (Figure 2 depicts a block diagram of
the RCCL based system).
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Figure 2 - RCCL Based Mark II Control System

RCCL Retrofit: As illustrated by Figure 2, the serial terminal is now replaced by a UNIX
workstation.  At the Clemson Mechatronics lab [6], a Sparc IPX workstation running SunOS is
connected to a VME card cage via an SBUS to VME bus adapter.  The VME card cage contains
an XVME-203 real time clock board for generating real time interrupts, and an XVME-240 DIO
board for performing parallel I/O to the Mark II controller during control program execution.  An
RS232 port on the Sparc workstation is connected to the Mark II console port for downloading
and initialization of the new LSI-11/2 software (mopar) which replaces VAL-II.  The Mark II
controller is retained unaltered except for the addition of a DRV-11 parallel interface card which
connects to the XVME-240 parallel board. The PUMA 560 robot manipulator remains
unchanged.  The replacement software mopar is a LSI-11/2 program which takes care of
communicating with the digital servo cards, teach pendant, etc.  Mopar is aware of RCCL/RCI,
and must be downloaded via the serial link from the UNIX workstation each time the Mark II
controller is powered on. The above RCCL/RCI retrofit was used successfully at the Clemson
Mechatronics Lab for several projects, including [7], [8], and [9].
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Advantages of RCCL: RCCL/RCI provides a rich library of functions for controlling virtually
any type of robot.  The system is extensible to multiple user-defined robots.  RCCL programs are
considered planning tasks while RCI programs are real time control level tasks.  Sensor input
may be integrated into the trajectory generator at the RCI level.  For example, an impedance
based control for optimizing remote saw cutting was implemented using RCI level integration of
a force sensor [9].

RCCL also provides a three-dimensional graphic robot simulator; moreover, the same RCCL
program that is developed to move a real robot can first be run with the simulator. This feature is
extremely useful for debugging robot tasks that might otherwise result in collisions between the
robot and itself or its workspace. The simulator also allows the new RCCL user to experiment
with the system without fear of damaging the manipulator.

By utilizing programs written at the RCI level, the user can generate a dynamic desired trajectory
in real time. The generation of desired trajectories in real time was not possible with the old
VAL-II based system.  In addition, because the workstation running RCCL/RCI is far more
powerful than the LSI-11/2 computer, more complex trajectories can be implemented (i.e.,
minimization of kinetic energy, singularity avoidance, etc. [10]).

Disadvantages of RCCL: Though RCCL/RCI addresses many of the shortcomings of the original
VAL-II based control system and provides a robust environment for developing robot task
programs, there are some issues that RCCL/RCI does not address. One is the inability to
implement a user defined low level control strategy. Another is the inability to incorporate
additional sensor data into the low level control loop. These shortcomings are directly related to
the fact that an RCCL based system still uses the Mark II controller’s original computational
hardware (the digital servo boards) to implement the low level control.

The RCCL/RCI retrofit also consists of several complex procedures.  For example, the retrofit
(on our Sparc) involved installing an SBUS to VME bus adapter and configuring the SunOS
kernel to use the bus adapter and the XYCOM boards installed in the VME card cage. The
SunOS kernel had to be patched to implement the real-time capabilities of RCI; moreover, some
system devices had to be created [11]. This installation required some UNIX system
administration, system programming, and hardware interfacing skills.  Despite the initial
complexity, the system has performed well, except for occasional SunOS kernel panics that are
probably due to insufficient real memory (our Sparc is equipped with 32MB RAM). These
kernel panics would be devastating in a production situation because the control system simply
stops. Since the user level program that is running on the Sparc workstation has crashed, the
PUMA’s electromagnetic brakes engage to prevent the manipulator from being damaged, but the
task the robot is performing is interrupted with no means of recovery.

An additional disadvantage is cost.  While the RCCL/RCI software is available free of charge,
the computer hardware necessary to implement the RCCL/RCI retrofit is expensive.  A Sparc
workstation (or any of the other UNIX workstations supported) is quite costly when compared to
a PC system.  A VME card cage and bus adapter, as well as the XYCOM boards must also be
purchased.  Finally, the labor cost of installing and configuring the system can be quite high.

4 Motivation for a New PUMA Retrofit
There were three main motivating factors for development of a new PC-based PUMA robot
manipulator control system: cost, complexity, and flexibility. The cost and complexity of an
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RCCL based system were discussed in the previous section.  Flexibility refers to the ability to
implement arbitrary user-defined low level control strategies which can easily integrate sensor
information into the low level control. Flexibility also refers to the ability to easily use a wide
variety of sensors in the trajectory generator, low level control, and user programs. While an
RCCL/RCI based simplified impedance control was implemented by using force sensor
measurements to modify the desired position trajectory in [9], true force based control requires
that force sensor measurements be injected into the low level controller. The ability to integrate
additional sensors, such as ranging lasers, sonar, cameras, etc. into the low level control would
also allow the user to implement more complex control strategies (e.g., vision based control).
With the current digital servo boards in the Mark II, none of these more advanced operational
modes are feasible.

Implementation Issues: A new PUMA retrofit that would allow user defined low level control
strategies to be implemented must completely eliminate the LSI-11/2 and the digital servo boards
and replace this hardware with components that have the appropriate interfacing and
computational capabilities.  In addition, the new PUMA retrofit should have the capability to
provide a simple means of programming the low level control and adding additional sensors.
Once a platform for implementing low level control programs is developed, the next step is to
connect this low level controller to a high level trajectory generator.  One option is to use an
existing system such as RCCL or ARCL [12].  Another option is to develop a system from
scratch.  The first option (interfacing with RCCL and ARCL) is explored below while the second
option is the direction of our future work.

5 PC-Based PUMA Retrofit
The combination of the following three technical developments has made the PC-based QRobot
PUMA retrofit possible: i) the advent of high-speed, PC-based microcomputer CPUs, ii) the
availability of a hardware interface that can connect an external controlling computer directly to
the PUMA servo amplifiers and arm cable in the existing Mark II controller, and iii) the
availability of hard real-time operating systems for PCs (e.g., the QNX operating system [13],
[14]).  Specifically, the availability of cheap, powerful PCs and efficient PC real-time operating
systems make the implementation of a PC-based robot control system possible; moreover, the
TRC [15] board set for the Mark II controller makes a PC-based retrofit quite painless.

Real-Time PC-Based Control: Due to the economies of scale and increased CPU power, personal
computers have become viable, cost-effective alternatives to workstations in engineering
applications. An Intel Pentium processor easily outperforms a Sparc IPX while costing less than
a thousand dollars. Personal computers also have a lower maintenance cost associated with them,
both in terms of cost of parts, and in terms of expertise required to maintain them.  PC-based
systems are also inherently less complicated than UNIX workstations.

Table 2 below shows the results of running a control benchmark on various hardware platforms.
The benchmark consists of executing an extremely complex nonlinear control program for a two
degree of freedom revolute manipulator with flexible joints. All calls to perform A/D and D/A
were replaced with stubs, and the time required to execute one million iterations was recorded.
Speedup relative to a baseline Texas Instruments C30 DSP board based system was also
computed.  As the table shows, modern PC CPUs such as the Intel Pentium and Pentium Pro
outperform the C30 and the Sparc IPX by at least a factor of 15 (an explanation of this
phenomenon is found in [16]).  Basically, the ratio of floating point instructions to integer and
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other instructions in a control program is very low.  Consequently, the time required to execute
general purpose instructions dominates the time required for floating point instructions, making a
CPU’s FLOPS rating much less significant than one might assume.  Therefore, an Intel 486
DX2/66, which is rated at 3 MFLOPS, can outperform a C30, which is rated at 33 MFLOPS (i.e.,
for the implementation of this particular control algorithm).

OS CPU Execution Time (sec) Speedup
- C30 548 1.00
Win 3.1 486DX2/66 398 1.38
SunOS Sparc IPX 319 1.72
Win 3.1 P5/133 36 15.22
Win95 P5/166 30 18.27
NT 4.0 P6/180 19 28.84
NT 3.51 P6/200 17 32.24

Table 2 - Execution Time and Speedup
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Figure 3 - Execution Time of 1,000,000 Iterations
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Figure 4 - Speedup on Various CPUs

Because of the increased computing power and memory capacity of these systems, a PUMA
retrofit can be designed that will allow the user to implement more complex low level control
strategies.  In addition, due to the wide range of sensors with ISA or PCI bus interfaces, there is
greater flexibility in fusing sensor data into a low level control program (i.e., interface libraries
for ISA and PCI bus based video capture boards, laser ranging devices, etc. are widely
available).

TRC Hardware Interface: The main hardware component of our new controller architecture is
the TRC004 general purpose servo controller board.  This board provides eight channels of
buffered analog output, eight channels of analog input, six quadrature encoder inputs, 7 discrete
output bits and 6 discrete input bits.  In our application the TRC004 is connected to the PC ISA
bus via a TRC006 board, and to the Mark II controller via the TRC041 PUMA cable card set.
The TRC004 board is produced by Trident Robotics and Research Inc., a small company which
manufactures interface boards for Unimation control systems. Although there are many motion
control interface boards available now ([17], [18], etc.), the TRC boards are specifically designed
for use with PUMA robot manipulators and controllers and provide an almost “plug and play”
solution.  That is, installation of the TRC004 in the Mark II only requires point to point soldering
of connections to the Mark II backplane; moreover, the TRC041 Cable Card Set removes the
need for soldering by providing an interface between the TRC004 and the Mark II Arm Bus.
Connections to the motors, encoders, potentiometers, etc. on the PUMA robot are made through
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the Arm Bus slots rather than by point to point solder connections to the Mark II backplane.
Although the use of the TRC041 card set is not absolutely necessary, its use eliminates a large
amount of tedious soldering work and reduces the risk of damaging the backplane. The TRC006
(a bus decoder/buffer card for the PC ISA bus) provides the link between the PC and the Mark II
controller. This hardware connection allows the PC to execute low level control programs while
retaining the existing Mark II controller connections to the power amplifiers, joint actuators, and
encoders. The TRC006 board uses 64 bytes of ISA bus I/O address space when connected to a
TRC004. Encoder and potentiometer values are read from the TRC006, and desired joint
actuator voltages are written to it

Hard Real-Time Control: One of the requirements for successful implementation of a high-speed
low level control program is deterministic response.  If the only program being executed on the
computer is the control program, then deterministic response is not too difficult to achieve (see
[19] for a single tasking PC implementation of a PUMA controller). For reasons of cost and
simplicity, it would be desirable to have the user interface, the high level trajectory generator,
and the low level control programs all executing on the same PC.  Hence, a multitasking
operating system that provides deterministic response and priority based scheduling is necessary.
In addition, the operating system must have low overhead, allowing most CPU cycles to be
expended by performing useful computation such as control calculations or real-time data
plotting, rather than being consumed by OS overhead such as performing context switches.
Finally, the operating system should facilitate the development of hardware/software interfaces.
The real-time microkernel based operating system QNX, developed by QSSL [20], meets all of
these requirements. The availability of a high quality, efficient real-time operating system, like
QNX, makes the PC a viable platform for real-time control.  The feasibility of developing a real-
time PC-based control environment was presented in [16] and [21] which describe QMotor 2.0, a
QNX based real-time control environment developed for the testing of motor control algorithms.

6 QRobot Retrofit
The QRobot retrofit involved a hardware retrofit with the TRC board set, low level software
development (i.e., the design of a real-time servo subsystem), and high level software
development (i.e., connection of the servo subsystem to high-level trajectory generators).

Hardware Retrofit: The first step was to remove the digital servo boards, LSI-11/2 computer,
CMOS and EPROM boards, and the ADAC interface board from the Mark II chassis.  The
TRC041 cable card set was then installed in the Mark II controller, thereby providing a
connection between the backplane of the Mark II and the TRC004 board.  The TRC004 board
was then bolted to the chassis of the Mark II and connected to the TRC041 cable card set.  Some
minor adjustments to the TRC004 were necessary. These adjustments required simple
instruments found in most control labs. Instructions for performing these adjustments were
included with the TRC004 board, and the board’s designer [22] was very helpful during this
phase. Finally, the TRC006 was installed in the QNX based PC that is used to perform the
control computations. This hardware retrofit effectively replaced the obsolete 1970’s era
controller with a Pentium based computer that has orders of magnitude greater computing power
and memory capacity.

Figure 5 illustrates how the computational engine has been moved from the Mark II controller to
the PC.  Notice how much simpler the retrofitted system is when compared to Figure 1 and
Figure 2.
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Low Level Control (QRobot): In the original Mark II architecture, the digital servo boards
contain the low level controller that ensures that link actuators move to the desired joint position.
Each of the desired joint position setpoints are specified by a high level trajectory generator.
Due to the disadvantages mentioned in sections 3 and 4, the digital servo boards must be
replaced with a digital control program running on the QNX based PC.  Since the original Mark
II LSI-11/2 based trajectory generator produced new setpoints every 28ms, most high level
replacements for this trajectory generator (RCCL, ARCL, etc.) have been written to produce new
setpoints at the same rate (i.e., 28ms). QRobot was also designed to accept setpoints at this rate.

The low level control program is an implementation of a proportional derivative controller with
static/coulomb friction compensation for all joints and gravity compensation for the second and
third joints. The low level control program inputs the current joint position from the encoders
and outputs the calculated control signal to the joint actuators. Joint velocities are manufactured
via a backwards difference method. The manufactured joint velocity signals are then low pass
filtered to eliminate excess noise.  Figure 6 depicts the low level control structure.
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Figure 6 – Low Level Control Structure

In Figure 6, the symbols ad, vd and qd denote the desired acceleration, velocity, and position,
respectively. The desired position setpoint generated by the high level trajectory generator
(RCCL, ARCL, etc.) is denoted by qdh, while Kp, Kv are position/velocity feedback gains, which
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are determined experimentally. The desired acceleration and desired velocity were calculated by
taking the time derivative of the expression given for qd.

To test the controller, a simple program that allowed the user to enter the desired joint setpoint
position in degrees was written. To mimic a separate high level trajectory generator, a separate
program was used to pass the qdh vector to the low level control program using a QNX
interprocess communication mechanism called message passing (in the final working system, the
trajectory generator will be a separate process). The use of interprocess communication at this
early stage made the integration of the low level control program with high level trajectory
generators very easy. The low level control program was run at 1KHz, 2KHz, and 4KHz.
Software QNX timers (for the 1 and 2 KHz runs) and a hardware timer (for all frequencies) were
used to run the control with identical results (the software timers proved reliable). An RCCL
program was written to move the PUMA from the RCCL park position to an end position at a
constant speed and then back to the park position at triple that speed. Figure 7 shows the desired
position trajectories for all joints while Figure 8 shows the position tracking error.

Figure 7 - Desired Joint Positions (Radians vs Seconds)



11

Figure 8 – Position Tracking Error (Radians vs Seconds)

High Level Software Development for RCCL Connection: The QRobot system provides a means
for moving the robot to a desired setpoint position.  In order to perform useful tasks, the robot
must be able to follow trajectories specified programmatically (i.e., an application program
interface and a high level trajectory generator are needed). Since the RCCL high level trajectory
generator has many desirable qualities, we developed an interface program to connect RCCL to
QRobot. Figure 9 shows how the QRobot system was integrated with our RCCL workstation.
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Figure 9 – RCCL/QRobot Architecture
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Normally, when connecting RCCL to a robot controller, an RCCL I/O driver must be written and
a communication protocol must be developed.  In our existing RCCL system (see Figure 2),
communication between the Sparc running RCCL and the Mark II controller is implemented via
a parallel interface (with additional hardware such as an SBUS->VME bus adapter, etc.)
However, for the QRobot retrofit, RCCL was connected to a QNX based PC which runs QRobot.
Since both QNX and UNIX provide TCP/IP based Ethernet networking facilities, we used
TCP/IP sockets to avoid having to write a communications protocol or a hardware device driver.
In addition, since RCCL’s 3-D simulator uses internet domain sockets to communicate with
RCCL user programs, we decided to use the simulator service for QRobot connection rather than
writing an RCCL I/O driver from scratch. The time savings in terms of software development
effort is significant.

The communication between RCCL’s trajectory generator and its 3-D robot simulator was
implemented at two layers. The lower layer establishes a simple package oriented connection.
This layer was implemented in the RCCL simulator device driver.  While the trajectory generator
is running, packages are transferred continuously in both directions over this connection at a
specified rate. In the old RCCL system, packages were transferred between the RCCL program
running on the UNIX workstation and mopar running on the Mark II’s LSI-11/2 processor. For
the PUMA 560, each data package contains the new desired setpoints for each joint along with
other commands such as enabling or disabling arm power, etc.  The packages received from the
controller by the driver contain the current state of the robot (the current joint angles, information
about the gripper, force/torque sensors, etc.)

In the existing RCCL system, the robot simulator interface performs both lower and higher layer
communication on the other side of the connection. In the RCCL/QRobot system, the RCCL
robot simulator interface was replaced by a program called the “RCCL interface” that executed
on the QNX based PC.  The operation of the RCCL interface is very similar to that of the RCCL
robot simulator.  First, the RCCL interface waits for an RCCL program to establish a connection
(via the simulator interface).  As soon as the connection is established, the RCCL interface
begins to exchange data packages with the RCCL program. The RCCL interface decodes the
data packages and forwards the relevant information to the low level control program (QRobot).
In the same manner, the RCCL interface gathers data from the low level control program,
encodes them into data packages, and sends them back to the RCCL program running on the
UNIX workstation. By using the RCCL interface, a user is able to run a regular RCCL program
as though he is using the RCCL simulator; however, the RCCL interface actually controls the
robot using QRobot on the QNX PC. The standard RCCL box demo program, and others, were
successfully executed.

While use of the RCCL interface proved successful, there are some drawbacks to this method.
Two computers are still required (the UNIX workstation which runs RCCL and the PC which
runs QRobot). Normally, communication over an Ethernet network would be cause for concern
in an application which requires deterministic response. However, this problem was overcome by
using an isolated Ethernet network between the UNIX workstation and the QNX PC (a simple
10baseT crossover cable was used to connect secondary Ethernet interfaces between the two
computers). Since the high level task space robot program is running on the UNIX workstation,
sensor data that is used in trajectory planning must be passed to the UNIX workstation as
opposed to simply being retained on the PC.
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If the high level robot control library (RCCL in this case) was executing on the same computer
as QRobot (i.e., the QNX based PC), all of the disadvantages of the simulator service interface
technique would be addressed. Hence, porting RCCL to QNX seemed like a good solution. This
idea was not pursued by us since John Lloyd, one of the authors of RCCL, tried unsuccessfully
to port RCCL to QNX himself. The primary problem here is that RCCL depends on some UNIX
functionality (such as shared address space between threads) which QNX does not support fully.

High Level Software Development for ARCL Connection: ARCL, developed by Peter Corke, is a
robot control library which provides some of the functionality of RCCL (though in a much more
limited fashion); however, its architecture makes it seem better suited for porting to a PC-based
platform. ARCL is composed of three major parts that are listed below. The reader is referred to
[23] which describes ARCL in more detail.

API Application program interface and math support
Platform independent
Manipulator independent

AKI Kinematic interface
Platform independent
Manipulator dependent

AMI Machine interface
Platform dependant
Manipulator and controller  dependent

Since the AKI for the PUMA 560 is already implemented in ARCL, our first assessment
revealed that the only major effort in porting ARCL to QNX would be porting the AMI. The first
step in porting ARCL was to obtain the robot and platform independent AMI (called the
“offline” UNIX AMI) working under QNX. This AMI doesn't support any real time functionality
or low level control, it simply dumps the trajectory generator output to a file.  The file can then
be analyzed for correctness. Once a QNX specific makefile was written, and some minor
adjustments due to differences in the implementation of variable parameter list functions on
UNIX and QNX were made, the trajectory generator gave the expected results while running on
QNX.

The two major functions of the AMI are to provide the real time capabilities (i.e., calling the
trajectory generator at a certain fixed frequency) and to provide communication with the low
level robot controller. For communication with the low level control, a client/server
communication structure was used. For this application, ARCL's trajectory generator is the client
and QRobot (the low level control program) is the server. For robust communication between the
AMI and QRobot, we decided to use the client/server classes already developed in our QMotor
environment. Unfortunately, the client/server classes were implemented in C++ while ARCL
was implemented in C.  This meant that either C to C++ interfacing functions had to be written,
or ARCL had to be ported to C++. The latter solution seemed to make more sense. While
compiling a C program as a C++ program should be trivial, this was not the case with ARCL.
C++'s stringent type checking conflicted with some programming techniques used in ARCL, so
almost all ARCL modules had to be modified to make them type consistent.
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Calling the trajectory generator at a certain frequency is actually an easy task in QNX. The timer
and proxy mechanisms in QNX can be used to wake up the trajectory task. However, ARCL
used a structure similar to RCCL, in that both the trajectory generator and the user program tasks
had to share the same address space.  One can remedy this address space problem with one of the
following approaches.

1. Link the trajectory generation code into the user program, thereby producing only one
program to provide a thread of execution for the trajectory generator. This method can be
viewed as co-operative multitasking and is a very poor solution. The user program must call
the trajectory generator at the correct frequency regardless of any other tasks that the user
program must perform. This type of operation is impossible if the user program blocks for
any reason (waiting for user input, disk activity, etc.) While this method was not a
satisfactory solution, it was the simplest, and did allow us to move the robots from an ARCL
program via QRobot.

2. Use threads. Threads are actually multiple instances of the same process that share the same
address space (data) but have different stacks. Unfortunately, while QNX does provide a
tfork() function, which spawns a thread, the support for threads is minimal. Some QNX
library functions are thread-safe, some are not, and there is no documentation as to which
ones are thread-safe and which are not. If a non thread-safe function is called, the trajectory
generator and user program could crash, or worse yet, produce incorrect results with no
indication of a failure.  Since the trajectory generator only uses math functions, it should be
possible to avoid these problems, so this is the next solution that will be pursued.

3. Use tasks with separate address space and use interprocess communication. Shared memory
would be the best IPC mechanism for this application; however, there is a lot of preparation
involved in getting two processes to share memory. A shared memory segment is not the
same as shared address space. When threads share address space, all threads can simply
access variables by name. When shared memory is used, one task must create the shared
memory, and the rest of the tasks connect to it. All tasks must then agree where in shared
memory the shared variables are placed, and the variables must be accessed only through
special pointers to the shared memory segment. An alternative would be to write a shared
memory manager that would effectively provide a shared address space. This approach
should be avoided if possible since this is a complicated task that provides operating system
functionality. This course will only be pursued if the thread implementation fails.

With the AMI for QNX functioning (though only in method 1 described above), some simple
ARCL programs were implemented. These revealed some limitations of the current
implementation of ARCL. First, it was not possible to specify a desired position for the robot in
joint space. A look at the ARCL source code revealed that this is partially implemented, but not
completed. Some modifications to ARCL were made to allow specification of desired position in
joint space, but it was not possible to move to a target in joint space with a desired joint velocity.
Rather, the desired time of execution had to be specified. Furthermore, the ARCL trajectory
generator simply generates a stream of setpoints and sends them to the controller, without
checking to see if the robot is actually moving. While one can make some arguments for this
approach, we believe that it would be preferable for the trajectory generator and user program to
be given feedback during a move.
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7 Conclusion
Our work for the U.S. Department of Energy requires an inexpensive robot control system
capable of interfacing to ISA and PCI bus compatible sensors and the ability to modify the
control algorithm at the lowest level. Attempts to use RCCL and ARCL have revealed that there
are no currently supported general robot control systems that meet our requirements. Previous
efforts such as RCCL and ARCL provide partial solutions, but these control environments were
developed at a time when the technology was not available to allow a clean implementation of
such a system.  Both RCCL and ARCL use some object oriented design, yet they do not use
object-oriented development tools (i.e., C was used for implementation).

The result of the work presented in this paper is an Intel PC-based robot control system.  The low
level robot control program (QRobot) works well, as the plots of tracking error have shown.
Though the RCCL simulator interface and a preliminary QNX port of ARCL both worked to
some extent, and can be used for simple robot tasks, neither is a satisfactory, robust solution.
Hence, the next phase in this project is the specification, design, and implementation of an object
oriented high level robot control system which would provide functionality similar to ARCL and
RCCL. Implementation in C++, an object oriented language, will make the system more
portable, maintainable, and extensible. C++ is chosen over other object oriented languages
because of performance considerations. C++ programs can be as fast and efficient as C
programs, whereas other object oriented programming languages such as Java and Smalltalk are
much slower. In addition, the new system will be able to run on QNX as a native program, so
that only one PC will be required to control the robot. Based on our previous experience with
control implementation, we believe that modern Pentium CPUs are powerful enough so that one
PC could actually control multiple robots.

No robot control system is truly complete without a 3-D robot simulator. A simulator allows
users to test robot control programs without risking damage to the actual manipulator.  Hence,
the new robot control system will include an OpenGL [24] based 3-D robot simulator, capable of
running on any platform that supports OpenGL (including Silicon Graphics workstations and
PCs running Windows 95 and Windows NT).  Work on the simulator has already begun, and a
screen shot is shown in Figure 10.  Currently, the simulator only supports the PUMA 560, but it
will be made extensible to any robot which has a D-H representation.

Figure 10 - 3D Robot Simulator
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