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Abstract 

Robotic systems are well suited for decontamination and decommissioning (D&D) tasks in hazardous 

environments. Advanced semi-autonomous telerobotic solutions for D&D tasks go beyond simple video-based 

interaction and include virtual reality (VR) interfaces and flexible sensor integration. The capability of those 

systems range from real-time control tasks to graphical user interface (GUI) components utilizing video and 

VR. This paper describes QRobot, a PC-based system for telerobotic D&D operations. The system integrates 

hardware interfacing, real-time joint level control, sensors, tool control, networking and task level programming 

as well as video and VR based operator interfaces. The system demonstrates that the personal computer (PC), a 

cost effective and widely used computing platform, is well suited to the integration of real-time control 

tasks and advanced user interfaces. An experimental section demonstrates the system’s functionality 

by using an example workpiece as the subject of a D&D operation. 
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1. Introduction 

The U.S. Department of Energy (DOE) is facing the decontamination and decommissioning of a high 

number of surplus facilities. These facilities often contain radioactive or other hazardous material. 

Current technologies are often labor intensive, time consuming, expensive, or they unnecessarily 

expose workers to the hazardous material. The DOE is looking for new and innovative technologies 

that allow D&D operations to be faster, safer, and more cost-effective. Telerobotic systems provide a 

good solution to this problem. They allow robots to be remotely controlled from an operator console 

and provide visual feedback to the operator. In basic systems, an operator controls the robot directly 

(e.g., with a joystick) and receives video feedback [1]. Performing a remote disassembly is a 

complicated, often repetitive task, which requires skilled operators. Therefore, much of the ongoing 

research focuses increasingly on the development of semi-autonomous systems. In a semi-autonomous 

system, higher level tasks, such as removing a bolt, are performed automatically by the system. 

Ongoing research also focuses on VR based operator interfaces to simplify the user interface. 

This paper describes how the QRobot joint level control system [2] was extended to a complete 

semi-autonomous robot control system for D&D operations. QRobot is the robotic part of the research 

being conducted under DOE Grant DE-FG07-96ER14728, entitled “Advanced Sensing and Control 

Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites” [3]. It is a purely 

PC based system that integrates the following components: 

• A joint level control and a trajectory generator with a high level programming interface for Puma 

manipulators. 

• A 3D OpenGL-based hardware-accelerated robot simulator. 

• Both video based and VR based operator interfaces. 
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• Teleobservation programs. 

• Interfacing of different sensors. 

• Control of different robotic end-effectors. 

The experimental section of this paper documents the capability of the QRobot system to perform a 

sample D&D operation. 

2. Motivation for Developing a PC Based System 

The components of an advanced semi-autonomous telerobotic system have different hardware and 

software requirements: 

• The joint level control task and the trajectory generator require hard real-time performance. 

• The GUI needs to integrate VR and video techniques. Hardware accelerated 3D rendering is 

required for the VR interface. 

• Networking capabilities are required in order to locate the robot control hardware remotely from the 

operator console. Networking is also required if a multiprocessor architecture is used to divide the 

work among multiple computers (e.g., video capture on one PC, robot control on another PC, etc.). 

The above requirements usually lead to the integration of proprietary solutions and expensive 

hardware platforms. As an example, consider an RCCL based system. The software consists of a robot 

control library (RCCL [4]) running on a Sun workstation, Moper running on a LSI 11/2 processor, and 

firmware for joint level control running on digital servo boards inside the Mark II [5]. Additional 

hardware required includes an SBUS to VME bus adapter and a VME card cage. The closed 

architecture of the Mark II controller prevents the implementation of new, state-of-the-art control 

algorithms [2], as well as the integration of sensors such as cameras into the control loop. The 
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heterogeneous architecture of this type of system leads to a higher complexity of integration and 

higher costs. 

QRobot is entirely PC-based. The entire computational functionality of the system, including the 

joint level control, is implemented exclusively as PC software. Neither a dual processor architecture 

(like PC/digital signal processing boards solutions) nor special controller hardware (such as the Mark 

II’s digital servo boards) is necessary.  

This system has the following advantages: 

• The system is cost-effective, because PCs and their components are less expensive than proprietary 

controllers or traditional Unix workstations. 

• The system has a simpler architecture, since the additional effort to integrate completely different 

hardware components (such as VME cards with an SBUS computer) is not required. 

• The system is more flexible. To modify or extend the system, only a change to PC source code is 

necessary. 

• The PC is a widely known and technically advancing technology. Many powerful software 

packages as well as a great variety of interface boards are available for the PC. 

There are two developments that allow a PC based system to fulfill the different hardware and 

software requirements stated above. First, the advent of high-speed PC CPUs provides computing 

power similar to or exceeding Unix workstations or special purpose computers such as DSP boards 

[6]. Second, hard real-time PC operating systems (OSs) are able to execute real-time tasks (such as the 

joint level control) as well as non real-time tasks (such as the GUI) on one CPU [7]. 
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3. Overview of the Disassembly System 

Fig. 1, 2 and 3 show the software and hardware components that are distributed across three PCs. The 

VR Operator Interface PC runs Windows NT, while the Robot Control PC and the WebCam PC run 

QNX, a real-time OS. The VR Operator Interface and the Robot Simulator are integrated into one 

Windows NT program. The Video Operator Interface contains the actual disassembly program and 

communicates with the VR Operator Interface over Internet Domain TCP/IP sockets. Note that the 

WebCam PC and the Robot Control PC could be combined into a single PC; however, this would 

result in a slower performance.  

The Disassembly Program issues high level commands to ARCL, a robot control library that serves 

as the programming interface and as the trajectory generator. ARCL generates a stream of setpoints 

that are fed into the Joint Level Control. Observation Windows provide visual feedback of the D&D 

operation. They show a continuously updated image from one of the video cameras. Multiple 

observation windows can be used with different video cameras. The WebCam System allows video 

feedback over the World Wide Web by using a standard web browser. The camera, the pan/tilt unit 

(PTU) and the zoom lens of the WebCam System are also accessible from the observation windows 

running on the Robot Control PC. Special programs, called Hardware Servers, are responsible for 

accessing the PC boards (e.g., PTU server, MultiQ server, etc). Control Servers implement control 

algorithms (e.g., zoom lens control, robot joint level control). Applications use Clients to communicate 

with servers. 

Different PC boards are used in the system: Quanser’s MultiQ board and ServoToGo’s S8 board 

for digital and analog I/O, the Imagenation PXC200 and Matrox Meteor frame grabbers for video 

capturing, and a custom board for interfacing the force/torque (F/T) sensor. The main hardware 
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component is a Puma 560 Manipulator. A hardware retrofit interfaces the encoders and potentiometers 

of the Puma and the power amplifiers of the Mark II directly to an I/O board. 
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Figure 1. The robot control PC 
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The F/T Sensor and the Toolchanger are mounted on the Puma’s wrist. A tool rack provides three 

tools for the disassembly: a Gripper, an Air Motor for bolt removal, and a Laser Diode to simulate 

torch cuts. The vision system consists of two cameras. The first, called the Overhead Camera, is 

mounted directly over the Puma’s workspace and is connected to the Robot Control PC (fig. 1). The 

second camera, called the WebCam, is mounted on a PTU, equipped with a zoom lens, and is 

connected to the WebCam PC (fig. 3). 
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Figure 2. The VR operator interface PC 
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Figure 3. The webcam PC 
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4. Hardware Components 

4.1 The Puma 560 Retrofit 

The standard controller for Puma manipulators is the VAL-II based Unimation Mark II. Six MC6503 

based digital servo boards perform the joint level control [5][8]. Implementing the control as a PC 

program allows the development of arbitrary user-defined joint level controls and the integration of 

sensor information into the control loop. To achieve this, a retrofit of the Mark II hardware is 

necessary. 

The hardware retrofit directly interfaces the encoders and potentiometers of the Puma and the 

power amplifiers of the Mark II directly to a PC I/O board. The TRC boards (TRC004, TRC006 and 

the TRC041 card cable set), produced by Trident Robotics and Research Inc. [9], were initially used 

for this purpose [2]. The TRC boards provide a simple but proprietary solution. That is, the user is 

dependent on one source of hardware and software – Trident Robotics Research. In order to make the 

system more flexible and less dependant on one vendor’s hardware, the next step was to replace the 

TRC boards with generic interface boards. Quanser Consulting’s MultiQ board [10] was selected to 

replace the TRC004 and TRC006 boards. It was necessary to develop an additional simple interface 

board to connect the MultiQ board to the amplifier circuits of the Mark II. This interface board 

contains preamplifiers and filtering circuitry for the noisy potentiometer readings. The TRC041 cable 

card set was replaced by an in-house developed cable card set.  

To demonstrate that the architecture is flexible enough to easily accommodate other motion control 

interface boards, another Mark II controller was retrofitted with a ServoToGo (STG) S8 interface 

board instead of the MultiQ board. 
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4.2 End-Effector Hardware 

The D&D tasks require various tools and sensors. To accommodate these tasks, an ATI Industrial 

Automation Gamma 30/100 F/T sensor is mounted at the end of the robot arm. The FT sensor is 

interfaced to the PC via an ISA bus controller board. The toolchanger is mounted on the FT sensor. It 

is a Light 5 Robotic Tool Changer, also from ATI. It contains 10 electric and 6 pneumatic pass-

through ports, for electrical and pneumatic connections on the end-effector. The custom-built tool rack 

provides space for three tools: 

• An MMR-002 air motor, from Micro-Motor Inc., is used for bolt removal. A Gator Grip socket tool 

is mounted on the end of the air motor. The Gator Grip is an universal socket that automatically 

adjusts to varying bolt sizes, allowing bolt removal operations to proceed even with several 

millimeters of positioning error. 

• A standard pneumatic gripper is used to remove stuck bolts and the motor end cap. 

• A laser diode is used to simulate a cutting torch. 

Electrically controlled air valves actuate the tool changer, the gripper and the air motor. Digital output 

lines of the MultiQ board control all tools. 

4.3 Observation System 

The observation system consists of two Pulnix TMC-7 cameras. One is connected to a Matrox Meteor 

PCI bus frame grabber, the other uses an Imagenation PXC200 PCI bus frame grabber. One camera is 

mounted in a fixed direction above the workspace. The other camera is mounted on a Directed 

Perception PTU, model PTU-46-17.5. The PTU is connected to the PTU controller (a micro controller 

based constant acceleration open loop control), which is in turn connected to the PC via an RS232 

serial port. The PTU mounted camera also uses a zoom lens. The motors and potentiometers of the 



 10 

zoom lens are connected to a custom interface board (containing amplifiers and voltage dividers), 

which is then connected to a MultiQ board for A/D and D/A. 

5. Software Components 

5.1 The Multitasking and Communication Architecture 

The system’s functionality is split into many cooperating tasks. For these tasks to work seamlessly 

together, the OS must fulfill certain requirements. It must provide priority based deterministic CPU 

scheduling to ensure that high priority real-time tasks (e.g., the joint level control) are not delayed by 

low priority non real-time tasks (e.g., GUI tasks). It also must provide robust interprocess 

communication (IPC) mechanisms so that the cooperating tasks can synchronize and communicate. 

The real-time microkernel based OS QNX, developed by QSSL [11], meets all of these requirements. 

Unlike real-time extensions such as RT-Linux or Hyperkernel for Windows NT, QNX is a true 

microkernel real-time OS. One benefit of this is that the whole spectrum of OS functions, including 

file access and networking, can be used in real-time tasks. 

Client/Server Architecture. The system utilizes two types of servers. Hardware servers are used to 

access hardware. Control servers implement a control algorithm. Both types of servers are separate 

programs that usually cycle at a fixed rate. To exchange data with a server (e.g,. to send setpoints to a 

control server or to read analog inputs from a hardware server), a program is linked with the 

appropriate client library. The client library uses shared memory or message passing to communicate 

with the server. Message passing is a QNX IPC mechanism that is very flexible because it is network 

transparent. This means that the same client code will work with a server whether it is located on the 

same PC or a remote PC. For example, the video client located on the Robot Control PC can connect 

to the video server of the overhead camera, also running on the Robot Control PC. Alternately, it can 
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connect to the WebCam Video Server, which is running on the WebCam PC. This mechanism allows 

great flexibility in distributing the resources of the system. 

Another advantage of the client/server concept is that multiple clients can use the same server. In 

this way, resources can be accessed from multiple tasks. For example, the video clients of the operator 

interface, the observation windows and the WebCam can all use the overhead camera video server 

simultaneously. Since QNX message passing provides synchronization implicitly, concurrent requests 

are automatically serialized. Finally, the interface between client and server adds a level of abstraction 

to the hardware interfacing. To use different I/O boards, different servers are implemented, but the 

same generic client can be used. The communication protocol between client and server does not 

change. For a client to use a different I/O board, a different server must be started, but no client code 

needs to be changed or recompiled. 

All clients and servers are written in C++. Currently, the system contains six different kinds of servers: 

• The MultiQ and the STG S8 server perform digital and analog I/O at a fixed frequency. A generic 

I/O board client is used to communicate with either of these servers. 

• The Matrox Meteor Server and the Imagenation PXC200 Server capture frames on demand. A 

generic video client is used to request and receive frames from either server. 

• The F/T sensor server is interfaced to the ISA F/T sensor controller board. It reads the force and 

torque values continuously and provides them to the F/T client in a shared memory space. 

• The PTU server controls the PTU over the RS232 serial port. It receives messages from the PTU 

client that contain the desired angles and issues move commands to the controller. 

• The zoom lens server receives the desired zoom factor from the zoom lens client and uses a 

proportional position control to set the focal length of the lens. 
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• The timer server is a special server. It provides the clock for all other servers, which guarantees 

synchronous behavior of the different tasks. 

Priority based deterministic multitasking. QNX allows running different processes at different 

priorities. In the architecture of this system, timer servers, which create the system clock and trigger all 

actions, run at highest priority. Below that priority are hardware servers and control programs. All 

other tasks have lower priorities. This scheduling discipline guarantees certain safety features: 

• Varying system load will never delay the timer server. Processes falling behind the timer are 

always detected. 

• Hardware servers and control programs are never delayed by the user interfaces or other non-real 

time system processes. This feature allows having the real-time control and the user interfaces to 

be run on the same machine. 

• A crash of the user interface does not affect the execution of the control loop. 

5.2 Joint Level Control 

The joint level control is implemented as a QNX program. This is a very flexible solution, since the 

control algorithm can be modified directly by changing and recompiling the control program. The 

ever-increasing computing power of PCs allows the implementation of more complex control 

algorithms. In addition, it is now possible to include arbitrary sensor information in the joint level 

control loop, which allows the implementation of advanced sensor-based control algorithms such as 

force-based control or direct visual servoing. 

The joint level control used in the D&D system was developed using QMotor [12], which is an 

environment for PC based control program development and implementation. The control program 

implements a PD controller with static and coulomb friction compensation for all joints and gravity 
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compensation for the second and third joint. Joint velocities are manufactured via a backward 

difference method and low pass filtered [2]. The joint level control program works as a server and 

receives the stream of setpoints via message passing from the joint level control client, which is part of 

the QRobot version of ARCL. The control can be switched to a zero gravity mode. In this mode, the 

control only compensates for the gravity on the robot links instead of servoing to desired setpoints 

[13]. The robot can be freely moved by hand in this mode, which is used to teach end-effector 

positions and orientations with the teachpendant program. 

5.3 Trajectory Generation and Robot Programming Interface 

To achieve the goal of an entirely PC-based system, a high-level robot control API and trajectory 

generator package for the PC is required. As there is no such package available for QNX, the quickest 

solution is a port from a different platform. One of the most sophisticated and well-known high level 

robot control libraries is RCCL. John Lloyd, one of the developers of RCCL, had unsuccessfully tried 

to port RCCL to QNX. For this reason, RCCL was not considered for use in this project. 

The Advanced Robot Control Library (ARCL), developed by Peter Corke at CSIRO [14][15], is 

not as extensive as RCCL, but provides similar functionality. ARCL seemed to be more suitable for a 

QNX port, because its modular architecture separates platform dependent and platform independent 

parts. ARCL was developed for Unix workstations. Porting ARCL to QNX and integrating it with the 

QRobot system required significant effort. This effort included making the C source code C++ syntax 

compliant, debugging the existing ARCL source code, developing the platform specific part of ARCL 

(called the ARCL machine interface, or AMI), and embedding the ARCL modules into the real-time 

environment of QNX and the client/server architecture. 
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The main challenge of porting ARCL was writing the AMI for QNX. The AMI is the platform 

dependent module that contains functions for multitasking, timing and hardware interfacing of the 

manipulator. Two problems occurred when developing the AMI for QNX. First, the architecture of the 

AMI requires that both the trajectory generator task and the user program task share variables. This 

can be implemented either by using shared memory between these tasks or by using threads. Since 

ARCL was not designed to take advantage of shared memory, the development of a special memory 

manager would have been the only solution. Threads, the other approach, are multiple instances of a 

process that share the same address space. QNX supports threads, but in a limited fashion, and not all 

library functions are “thread-safe”. Tests showed that the thread-based solution, which is much easier 

to implement than the shared memory manager, was adequate. 

Semaphore management posed the other significant problem. QNX semaphores do not behave in 

accordance with the ARCL specification. This was rectified by modifying the way ARCL uses 

semaphores. In addition, ARCL expects the OS to destroy all semaphores at program termination, 

which is not the case with QNX. Consequently, over time, the system runs out of semaphores. To 

solve this problem, a semaphore manager was added to the AMI to keep track of the semaphores in 

use and to destroy them as the program terminates. 

To integrate ARCL into the QRobot system, the QNX/QRobot AMI was constructed to contain the 

following functions: 

• A joint level control client sends the trajectory to the joint level control server. 

• Functionality was added to connect to the robot simulator running on the Windows NT PC. Sockets 

were used as the communication mechanism. There are two modes of operation, test mode and 

standard mode. Test mode allows running robot control programs with the simulator alone, without 

accessing hardware. This is useful for debugging robot programs without the risk of damaging the 
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robot. In standard mode, the trajectory is sent to both the robot simulator and to the joint level 

control, so it is possible to compare the movement of the real robot with the simulator. A 

communication channel in the other direction, from the robot simulator to ARCL, was added to 

allow the virtual operator interface (which is part of the robot simulator) to send disassembly 

commands to the task level program. 

• Force and torque information is used to trigger an emergency stop to minimize damage from 

collisions between the end-effector and the workspace. 

Rather than using ARCL’s limited functionality to control tools (there is only functionality to control 

the gripper), a C++ class was developed for each tool. The tool classes use I/O board clients to control 

the tools. 

Although the port of ARCL achieved satisfactory results, it is not an ideal solution. The use of 

threads is not 100% safe, since not all QNX library functions are “thread-safe”, although we never 

identified any crashes that could be attributed to threads. If a user chooses to use a non thread-safe 

function in one of his programs, the behavior of the system is undefined. 

5.4 Robotic Utility Programs 

To facilitate the use and calibration of the D&D system, a set of robot utility programs was developed. 

Teachpendant: To learn the end-effector positions and orientations used in the D&D operation, a 

teachpendant program was developed, see fig. 4. The teachpendant uses the zero-gravity mode of the 

joint level controller, which allows the user to easily push the robot around in the workspace. Once a 

position and orientation is found, it can be stored under a given name in a position list. It is possible to 

leave the zero gravity mode at any time and move the robot to previously taught positions. The 
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position list can be stored in an ASCII file for later use in the teachpendant, or for use from an ARCL 

program. 

PotVal: The PotVal utility performs the initial calibration procedure of the Puma 560 that relates 

joint potentiometer readings to encoder readings. 

PumaCal: The PumaCal utility performs encoder calibration after power up of the manipulator. It 

determines the current position of the robot by using potentiometers and index pulses. This utility is 

similar to RCCL’s pumacal utility [4], but performs the calibration in only a fraction of the time. 

 

 

Figure 4. The QRobot teachpendant 
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5.5 The Disassembly Program 

A motor is used to demonstrate a simple disassembly. The objective is to remove the cap of the motor. 

Fig. 5 shows the steps performed by the system: 

1. Remove the first bolt. The gator grip is used to unscrew the bolt. Since the bolt usually stays in the 

housing, the operator has the additional option to remove the unscrewed bolt with the gripper and 

drop it into a container. 

2. Remove the second bolt in the same fashion as described in step 1. 

3. Perform a torch cut. In the experiment, the torch is simulated by a laser diode. 

4. Remove the cap with the gripper and put it on the table. 

The disassembly program is written in C++. For each disassembly step, via points are determined with 

the teachpendant program and saved to a file. The disassembly program reads this file and creates 

transformations and position equations for each via point. The position equations are the input to the 

ARCL move function calls. Each disassembly step consists of picking up the right tool from the tool 

rack, performing the operation, and returning the tool to the rack. Some special functions are defined 

to allow the operator to intervene in case the system fails to complete a step. These functions include 

manually getting or returning a tool and manually locking or releasing a tool.  

1 2

34

  

Figure 5. Steps to disassemble the motor 
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5.6 The Operator Programs 

Four operator interface programs offer different control and feedback functions. Observation windows 

and the video operator interface run on the same PC as the robot control, but at a lower priority. They 

use Photon, the windowing system for QNX. Photon provides functionality similar to the X Window 

System and Xt. To accelerate GUI development under Photon, the C++ class library QWidgets++ [16] 

was utilized. 

Observation Windows. The observation window (see fig. 6) provides live visual feedback from a 

video camera. When using the WebCam, the observation window offers additional functionality. 

Clicking in the image centers the PTU about that point. The buttons at the bottom of the window 

control the WebCam’s zoom lens. It is possible to start multiple observation windows and connect 

them to the same or different cameras. Since the observation windows use message-passing based 

client/server communication, the camera servers can be distributed over multiple PCs. The 

disadvantage of message passing is reduced speed in the image transfer. Depending on the PC’s 

performance, image size, image color depth, network traffic, and the video display driver, the 

observation window displays 1-5 frames per second. 

Web Camera. The WebCam is a World Wide Web based visual feedback, with similar 

functionality to the observation windows. The Apache web server starts a CGI program whenever the 

web page is accessed. The request for the web page contains the desired pan/tilt angles and the desired 

zoom factor as parameters. The CGI program moves the PTU to the desired position, sets the zoom 

factor, and captures an image. This image is then converted to JPEG format, and a web page is 

dynamically created to show the image. The client/server architecture allows multiple observation 

windows and any number of web browsers to request images at the same time. The advantage of the 
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WebCam is the accessibility from any Internet connected computer. The disadvantage is the lack of 

continuous and fast updates of the image. 

 

 

Figure 6. Observation window 

Video Operator Interface. The video operator interface provides even unskilled operators an easy-

to-use interface to control the disassembly tasks. The video image is used to trigger disassembly 

operations. The operator moves the mouse cursor over a certain part of the motor that he wants to 

disassemble. The operator interface then displays a pop-up menu with a list of disassembly options. 

For example, when the operator moves the mouse over the motor end cap, the end cap is highlighted, 

and a menu pops up with the menu item “Remove Cap” (see fig. 7). After the operator selects an 

operation, the program begins to perform the task and shows progress information in a dialog. As the 
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disassembly is being performed, the operator is able to supervise the operation in the observation 

windows. In case the disassembly of a part is unsuccessful, the operation can be repeated. 

The image-based selection of disassembly operations is convenient for the operator, but it also 

requires that the system knows where the parts of the object are located in the image. The Image 

Processing group at Clemson University is investigating the use of advanced image processing and 

3D-object virtualization techniques to automatically identify and locate these parts for the disassembly 

task [3]. This research is not addressed in this paper. To demonstrate the basic concept of the operator 

interface, the coordinates are manually determined in the current system.  

 

 

Figure 7. Video operator interface 

Virtual Operator Interface/Robot Simulator. The video operator interface works fine with a 

workpiece such as the motor and the overhead camera. However, using different camera perspectives 

or more complex workpieces can result in hidden parts that can not be viewed and selected by the 

operator. For instance, the front perspective of the motor would not show the second bolt at the back of 
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the motor. VR based operator interfaces overcome this problem. Using a VR interface, the operator is 

able to navigate within the virtual scene and view parts from different angles. The QRobot virtual 

operator interface is integrated into the robot simulator. 

Fig. 8 shows a screenshot of the robot simulator. Since there are no hardware accelerated 3D 

graphics libraries available for QNX, the program runs under Windows NT and uses OpenGL, a 

standard 3D graphics library [17]. The 3D scene consists of two Puma 560 robots, the toolrack and the 

workpiece. The main window is split into three parts that show the scene from different perspectives. 

In each sub-window, the operator can navigate by using the mouse, selecting and defining custom 

viewpoints or selecting the end-effector view. The latter option simulates the view of a camera 

mounted on the end-effector. The level of detail in the display can be reduced to accelerate the display. 

ARCL continuously sends the current joint position to the robot simulator, using the TCP/IP 

connection. Hence, the robot simulator is able to displays the robot’s joints at the current position. 

A special technique of 3D programming, called object picking, gives the operator functionality 

similar to the video based operator interface. Moving the mouse cursor over parts of the motor 

highlights these parts. Clicking on the parts displays menus with disassembly options. Once the 

operator selects a disassembly option, the software encodes this operation into a command word, and 

sends it to the video based operator interface, which initiates the operation. This data transport uses the 

same TCP/IP connection that is used to send the trajectory information. Progress reports are also sent 

back to update the progress dialog box as shown in fig. 8. 

The disadvantage of the current version of the robot simulator/operator interface is that the scene is 

hard-coded in the simulator. Changing the scene is not trivial and requires extensive programming 

effort. However, this compromise establishes a working system at this stage of the project. 

 



 22 

 

Figure 8. The virtual operator interface/robot simulator 

6. Experimental Results 

There are three aspects of the experiment. The first aspect is the reliability of the control system and 

the mechanical parts. With regard to reliablility, the system was successful in repeating the 

disassembly multiple times without any problems. The joint level control was capable of precisely 

moving different tools of different weights. Fig. 9 shows the desired position trajectories of link 3 for 

the bolt removal task in the top graph. The bottom graph displays the tracking error. The middle graph 

shows the tracking error for a test run without the bolt actually being present. The actual bolt removal 
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happens from t = 20 sec to t = 30 sec. Comparing the tracking error in the middle and bottom graph 

illustrates that the effect of the force created by removing the bolt does not affect the control 

significantly. 

The second aspect is the usability and reliability of the system used by an untrained operator. The 

experiment shows that both video and VR based operator interfaces provide an intuitive way to control 

the D&D operation. Only a few mouse clicks are necessary to guide the complete disassembly. 

Problems occur when the operator needs to recover from a system failure or a handling error. 

Generally, the capabilities of aborting operations and returning to the initial state are limited. Often, 

the robot, the tools, or workpieces have to be moved back manually to initial positions. 

Finally, the most interesting part is the stability of the GUI and the real-time control programs 

running together. The system shows high stability in this issue. For example, it is possible to open 

many observation windows while the D&D task is in progress. The observation windows slow the 

GUI down, but they do not negatively impact the control or the disassembly task. 

7. Conclusions 

The QRobot system described in this paper demonstrates the feasibility of using a PC for the various 

tasks required in telerobotic semi-autonomous D&D operations. It was shown how real-time tasks, 

such as the joint control, can be integrated with non real-time tasks, such as a GUI, on a single cost-

effective hardware platform. The client/server concept, using a modern real-time OS as its platform, 

provides a flexible method of communication for these tasks. The operator interfaces and the 

teleobservation programs provide an easy-to-use telerobotic operator environment. 

Future research is motivated by the limitations of the system, which originate in its software 

components and its architecture. ARCL as a high-level control library is not a satisfactory, robust, 
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general-purpose solution. Although QRobot is entirely PC based, it still uses two OSs: QNX (for all 

functions except the 3D robot simulator) and Windows NT (for the 3D robot simulator). This 

introduces higher complexity and cost. It would be desirable to have all components running under the 

same OS. Additionally, the system was developed by integrating different software components. All 

components have been specifically modified to work together, which leads to a static architecture. For 

example, extending the system to a different robot type would result in modifications of ARCL, the 

joint level control, the robot simulator and the way they communicate. The biggest problem is the 

limited flexibility in adapting the system to different applications. Basically, certain parts of QRobot 

(e.g., the robot simulator, the GUI, the tool clients, etc.) are specific to the D&D example of the motor 

disassembly. Adapting the system to a different application requires some knowledge of its internal 

workings. 

To overcome these problems, the current research targets the specification, design, and 

implementation of a new robot control environment. The framework would be object oriented, using 

the language C++. Objects would represent the different components of the system, for example the 

trajectory generator, manipulators, tools and sensors. Object oriented programming techniques like 

inheritance could be used to reuse code and easily extend the system without knowing its internals, 

thereby avoiding recompiling the whole system. The framework would provide functionality for object 

management, communication, and real-time task management. Finally, the goal would be the 

implementation of the complete robot control system under one OS to achieve a single PC, single OS 

solution. This new robot control environment would use the concepts and advantages of a purely PC 

based system as described in this paper, but improve the design to utilize state-of-the-art software 

development tools and techniques. The resultant system would allow researchers to focus on their 

actual application rather than the technical framework. 
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Figure 9. Joint 3 trajectories and tracking errors for the bolt removal 
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