
 1

TELEROBOTIC DECONTAMINATION AND DECOMMISSIONING

WITH QROBOT, A PC-BASED ROBOT CONTROL SYSTEM

M. S. Loffler1, N. P. Costescu2, E. Zergeroglu3, D. M. Dawson1

Abstract

Robotic systems are well suited for decontamination and decommissioning (D&D) tasks in hazardous

environments. Advanced semi-autonomous telerobotic solutions for D&D tasks go beyond simple video-based

interaction and include virtual reality (VR) interfaces and flexible sensor integration. The capability of those

systems range from real-time control tasks to graphical user interface (GUI) components utilizing video and

VR. This paper describes QRobot, a PC-based system for telerobotic D&D operations. The system integrates

hardware interfacing, real-time joint level control, sensors, tool control, networking and task level programming

as well as video and VR based operator interfaces. The system demonstrates that the personal computer (PC), a

cost effective and widely used computing platform, is well suited to the integration of real-time control

tasks and advanced user interfaces. An experimental section demonstrates the system’s functionality

by using an example workpiece as the subject of a D&D operation.

Key Words

Real-time, robotics, disassembly, virtual reality, PC.

1 Department of Electrical and Computer Engineering, Clemson University, 105 Riggs Hall, Clemson, SC 29634-0915, e-
mail: loffler@ces.clemson.edu and ddawson@ces.clemson.edu

2 Quality Real-Time Systems, LLC., 6312 Seven Corners Center #134, Falls Church, VA 22044, e-mail: nick@qrts.com

3 Lucent Technologies, Bell Lab Innovations, Optical Fiber Solutions, 50 Halls Rd, Sturbridge MA 01566, e-mail:
ezerger@lucent.com

 2

1. Introduction

The U.S. Department of Energy (DOE) is facing the decontamination and decommissioning of a high

number of surplus facilities. These facilities often contain radioactive or other hazardous material.

Current technologies are often labor intensive, time consuming, expensive, or they unnecessarily

expose workers to the hazardous material. The DOE is looking for new and innovative technologies

that allow D&D operations to be faster, safer, and more cost-effective. Telerobotic systems provide a

good solution to this problem. They allow robots to be remotely controlled from an operator console

and provide visual feedback to the operator. In basic systems, an operator controls the robot directly

(e.g., with a joystick) and receives video feedback [1]. Performing a remote disassembly is a

complicated, often repetitive task, which requires skilled operators. Therefore, much of the ongoing

research focuses increasingly on the development of semi-autonomous systems. In a semi-autonomous

system, higher level tasks, such as removing a bolt, are performed automatically by the system.

Ongoing research also focuses on VR based operator interfaces to simplify the user interface.

This paper describes how the QRobot joint level control system [2] was extended to a complete

semi-autonomous robot control system for D&D operations. QRobot is the robotic part of the research

being conducted under DOE Grant DE-FG07-96ER14728, entitled “Advanced Sensing and Control

Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites” [3]. It is a purely

PC based system that integrates the following components:

• A joint level control and a trajectory generator with a high level programming interface for Puma

manipulators.

• A 3D OpenGL-based hardware-accelerated robot simulator.

• Both video based and VR based operator interfaces.

 3

• Teleobservation programs.

• Interfacing of different sensors.

• Control of different robotic end-effectors.

The experimental section of this paper documents the capability of the QRobot system to perform a

sample D&D operation.

2. Motivation for Developing a PC Based System

The components of an advanced semi-autonomous telerobotic system have different hardware and

software requirements:

• The joint level control task and the trajectory generator require hard real-time performance.

• The GUI needs to integrate VR and video techniques. Hardware accelerated 3D rendering is

required for the VR interface.

• Networking capabilities are required in order to locate the robot control hardware remotely from the

operator console. Networking is also required if a multiprocessor architecture is used to divide the

work among multiple computers (e.g., video capture on one PC, robot control on another PC, etc.).

The above requirements usually lead to the integration of proprietary solutions and expensive

hardware platforms. As an example, consider an RCCL based system. The software consists of a robot

control library (RCCL [4]) running on a Sun workstation, Moper running on a LSI 11/2 processor, and

firmware for joint level control running on digital servo boards inside the Mark II [5]. Additional

hardware required includes an SBUS to VME bus adapter and a VME card cage. The closed

architecture of the Mark II controller prevents the implementation of new, state-of-the-art control

algorithms [2], as well as the integration of sensors such as cameras into the control loop. The

 4

heterogeneous architecture of this type of system leads to a higher complexity of integration and

higher costs.

QRobot is entirely PC-based. The entire computational functionality of the system, including the

joint level control, is implemented exclusively as PC software. Neither a dual processor architecture

(like PC/digital signal processing boards solutions) nor special controller hardware (such as the Mark

II’s digital servo boards) is necessary.

This system has the following advantages:

• The system is cost-effective, because PCs and their components are less expensive than proprietary

controllers or traditional Unix workstations.

• The system has a simpler architecture, since the additional effort to integrate completely different

hardware components (such as VME cards with an SBUS computer) is not required.

• The system is more flexible. To modify or extend the system, only a change to PC source code is

necessary.

• The PC is a widely known and technically advancing technology. Many powerful software

packages as well as a great variety of interface boards are available for the PC.

There are two developments that allow a PC based system to fulfill the different hardware and

software requirements stated above. First, the advent of high-speed PC CPUs provides computing

power similar to or exceeding Unix workstations or special purpose computers such as DSP boards

[6]. Second, hard real-time PC operating systems (OSs) are able to execute real-time tasks (such as the

joint level control) as well as non real-time tasks (such as the GUI) on one CPU [7].

 5

3. Overview of the Disassembly System

Fig. 1, 2 and 3 show the software and hardware components that are distributed across three PCs. The

VR Operator Interface PC runs Windows NT, while the Robot Control PC and the WebCam PC run

QNX, a real-time OS. The VR Operator Interface and the Robot Simulator are integrated into one

Windows NT program. The Video Operator Interface contains the actual disassembly program and

communicates with the VR Operator Interface over Internet Domain TCP/IP sockets. Note that the

WebCam PC and the Robot Control PC could be combined into a single PC; however, this would

result in a slower performance.

The Disassembly Program issues high level commands to ARCL, a robot control library that serves

as the programming interface and as the trajectory generator. ARCL generates a stream of setpoints

that are fed into the Joint Level Control. Observation Windows provide visual feedback of the D&D

operation. They show a continuously updated image from one of the video cameras. Multiple

observation windows can be used with different video cameras. The WebCam System allows video

feedback over the World Wide Web by using a standard web browser. The camera, the pan/tilt unit

(PTU) and the zoom lens of the WebCam System are also accessible from the observation windows

running on the Robot Control PC. Special programs, called Hardware Servers, are responsible for

accessing the PC boards (e.g., PTU server, MultiQ server, etc). Control Servers implement control

algorithms (e.g., zoom lens control, robot joint level control). Applications use Clients to communicate

with servers.

Different PC boards are used in the system: Quanser’s MultiQ board and ServoToGo’s S8 board

for digital and analog I/O, the Imagenation PXC200 and Matrox Meteor frame grabbers for video

capturing, and a custom board for interfacing the force/torque (F/T) sensor. The main hardware

 6

component is a Puma 560 Manipulator. A hardware retrofit interfaces the encoders and potentiometers

of the Puma and the power amplifiers of the Mark II directly to an I/O board.

QNX Real-Time Operating System

QNX/QRobot port of the
ARCL Robot Control Library

Joint Level
Control

I/O Board
Client

MultiQ Server

Force/
Torque
Sensor
Server

Force/
Torque
Sensor
Client

Gripper Tool
Changer

Force/
Torque
Sensor

Disassembly Program

 Video Operator
 Interface

Video
Client

PXC200 Video
Server

Overhead
Camera

Observation
Window (Overhead

Camera)

Video Client

Observation
Window

(WebCam)

Video Client

Pan Tilt Client

Laser
Diode

MultiQ Board FT I/O
Board

PXC200
Frame Grabber

Joint Level
Control
Client

Zoom Lens
Client

Air
Motor

Air
Valve

Air
Valve

Air
Valve

Puma 560 Manipulator

to
 th

e
W

eb
C

am
 P

C
 (s

ee
 F

ig
ur

e
3)

to
 th

e
VR

 O
pe

ra
to

r I
nt

er
fa

ce
 P

C
 (s

ee
 F

ig
ur

e
2)

Figure 1. The robot control PC

 7

The F/T Sensor and the Toolchanger are mounted on the Puma’s wrist. A tool rack provides three

tools for the disassembly: a Gripper, an Air Motor for bolt removal, and a Laser Diode to simulate

torch cuts. The vision system consists of two cameras. The first, called the Overhead Camera, is

mounted directly over the Puma’s workspace and is connected to the Robot Control PC (fig. 1). The

second camera, called the WebCam, is mounted on a PTU, equipped with a zoom lens, and is

connected to the WebCam PC (fig. 3).

Windows NT

VR Operator
Interface/Robot

Simulator
TCP/IP

Disassembly
Commands

Trajectory

to
 th

e
R

ob
ot

 C
on

tro
l P

C
(s

ee
 F

ig
ur

e
1)

Figure 2. The VR operator interface PC

QNX Real-Time Operating System

CGI program

Matrox
Meteor Video

Server

Camera Pan/Tilt
Unit

Pan/Tilt
Unit

Server

Apache Web Server

Pan/Tilt Unit
ClientVideo Client

Matrox Meteor
Frame Grabber

Serial
Port

Zoom Lens Control

Zoom Lens
Client

Zoom
Lens

from the Robot
Control PC

(see Figure 1)

I/O Board Client

MultiQ Server

MultiQ Board

Figure 3. The webcam PC

 8

4. Hardware Components

4.1 The Puma 560 Retrofit

The standard controller for Puma manipulators is the VAL-II based Unimation Mark II. Six MC6503

based digital servo boards perform the joint level control [5][8]. Implementing the control as a PC

program allows the development of arbitrary user-defined joint level controls and the integration of

sensor information into the control loop. To achieve this, a retrofit of the Mark II hardware is

necessary.

The hardware retrofit directly interfaces the encoders and potentiometers of the Puma and the

power amplifiers of the Mark II directly to a PC I/O board. The TRC boards (TRC004, TRC006 and

the TRC041 card cable set), produced by Trident Robotics and Research Inc. [9], were initially used

for this purpose [2]. The TRC boards provide a simple but proprietary solution. That is, the user is

dependent on one source of hardware and software – Trident Robotics Research. In order to make the

system more flexible and less dependant on one vendor’s hardware, the next step was to replace the

TRC boards with generic interface boards. Quanser Consulting’s MultiQ board [10] was selected to

replace the TRC004 and TRC006 boards. It was necessary to develop an additional simple interface

board to connect the MultiQ board to the amplifier circuits of the Mark II. This interface board

contains preamplifiers and filtering circuitry for the noisy potentiometer readings. The TRC041 cable

card set was replaced by an in-house developed cable card set.

To demonstrate that the architecture is flexible enough to easily accommodate other motion control

interface boards, another Mark II controller was retrofitted with a ServoToGo (STG) S8 interface

board instead of the MultiQ board.

 9

4.2 End-Effector Hardware

The D&D tasks require various tools and sensors. To accommodate these tasks, an ATI Industrial

Automation Gamma 30/100 F/T sensor is mounted at the end of the robot arm. The FT sensor is

interfaced to the PC via an ISA bus controller board. The toolchanger is mounted on the FT sensor. It

is a Light 5 Robotic Tool Changer, also from ATI. It contains 10 electric and 6 pneumatic pass-

through ports, for electrical and pneumatic connections on the end-effector. The custom-built tool rack

provides space for three tools:

• An MMR-002 air motor, from Micro-Motor Inc., is used for bolt removal. A Gator Grip socket tool

is mounted on the end of the air motor. The Gator Grip is an universal socket that automatically

adjusts to varying bolt sizes, allowing bolt removal operations to proceed even with several

millimeters of positioning error.

• A standard pneumatic gripper is used to remove stuck bolts and the motor end cap.

• A laser diode is used to simulate a cutting torch.

Electrically controlled air valves actuate the tool changer, the gripper and the air motor. Digital output

lines of the MultiQ board control all tools.

4.3 Observation System

The observation system consists of two Pulnix TMC-7 cameras. One is connected to a Matrox Meteor

PCI bus frame grabber, the other uses an Imagenation PXC200 PCI bus frame grabber. One camera is

mounted in a fixed direction above the workspace. The other camera is mounted on a Directed

Perception PTU, model PTU-46-17.5. The PTU is connected to the PTU controller (a micro controller

based constant acceleration open loop control), which is in turn connected to the PC via an RS232

serial port. The PTU mounted camera also uses a zoom lens. The motors and potentiometers of the

 10

zoom lens are connected to a custom interface board (containing amplifiers and voltage dividers),

which is then connected to a MultiQ board for A/D and D/A.

5. Software Components

5.1 The Multitasking and Communication Architecture

The system’s functionality is split into many cooperating tasks. For these tasks to work seamlessly

together, the OS must fulfill certain requirements. It must provide priority based deterministic CPU

scheduling to ensure that high priority real-time tasks (e.g., the joint level control) are not delayed by

low priority non real-time tasks (e.g., GUI tasks). It also must provide robust interprocess

communication (IPC) mechanisms so that the cooperating tasks can synchronize and communicate.

The real-time microkernel based OS QNX, developed by QSSL [11], meets all of these requirements.

Unlike real-time extensions such as RT-Linux or Hyperkernel for Windows NT, QNX is a true

microkernel real-time OS. One benefit of this is that the whole spectrum of OS functions, including

file access and networking, can be used in real-time tasks.

Client/Server Architecture. The system utilizes two types of servers. Hardware servers are used to

access hardware. Control servers implement a control algorithm. Both types of servers are separate

programs that usually cycle at a fixed rate. To exchange data with a server (e.g,. to send setpoints to a

control server or to read analog inputs from a hardware server), a program is linked with the

appropriate client library. The client library uses shared memory or message passing to communicate

with the server. Message passing is a QNX IPC mechanism that is very flexible because it is network

transparent. This means that the same client code will work with a server whether it is located on the

same PC or a remote PC. For example, the video client located on the Robot Control PC can connect

to the video server of the overhead camera, also running on the Robot Control PC. Alternately, it can

 11

connect to the WebCam Video Server, which is running on the WebCam PC. This mechanism allows

great flexibility in distributing the resources of the system.

Another advantage of the client/server concept is that multiple clients can use the same server. In

this way, resources can be accessed from multiple tasks. For example, the video clients of the operator

interface, the observation windows and the WebCam can all use the overhead camera video server

simultaneously. Since QNX message passing provides synchronization implicitly, concurrent requests

are automatically serialized. Finally, the interface between client and server adds a level of abstraction

to the hardware interfacing. To use different I/O boards, different servers are implemented, but the

same generic client can be used. The communication protocol between client and server does not

change. For a client to use a different I/O board, a different server must be started, but no client code

needs to be changed or recompiled.

All clients and servers are written in C++. Currently, the system contains six different kinds of servers:

• The MultiQ and the STG S8 server perform digital and analog I/O at a fixed frequency. A generic

I/O board client is used to communicate with either of these servers.

• The Matrox Meteor Server and the Imagenation PXC200 Server capture frames on demand. A

generic video client is used to request and receive frames from either server.

• The F/T sensor server is interfaced to the ISA F/T sensor controller board. It reads the force and

torque values continuously and provides them to the F/T client in a shared memory space.

• The PTU server controls the PTU over the RS232 serial port. It receives messages from the PTU

client that contain the desired angles and issues move commands to the controller.

• The zoom lens server receives the desired zoom factor from the zoom lens client and uses a

proportional position control to set the focal length of the lens.

 12

• The timer server is a special server. It provides the clock for all other servers, which guarantees

synchronous behavior of the different tasks.

Priority based deterministic multitasking. QNX allows running different processes at different

priorities. In the architecture of this system, timer servers, which create the system clock and trigger all

actions, run at highest priority. Below that priority are hardware servers and control programs. All

other tasks have lower priorities. This scheduling discipline guarantees certain safety features:

• Varying system load will never delay the timer server. Processes falling behind the timer are

always detected.

• Hardware servers and control programs are never delayed by the user interfaces or other non-real

time system processes. This feature allows having the real-time control and the user interfaces to

be run on the same machine.

• A crash of the user interface does not affect the execution of the control loop.

5.2 Joint Level Control

The joint level control is implemented as a QNX program. This is a very flexible solution, since the

control algorithm can be modified directly by changing and recompiling the control program. The

ever-increasing computing power of PCs allows the implementation of more complex control

algorithms. In addition, it is now possible to include arbitrary sensor information in the joint level

control loop, which allows the implementation of advanced sensor-based control algorithms such as

force-based control or direct visual servoing.

The joint level control used in the D&D system was developed using QMotor [12], which is an

environment for PC based control program development and implementation. The control program

implements a PD controller with static and coulomb friction compensation for all joints and gravity

 13

compensation for the second and third joint. Joint velocities are manufactured via a backward

difference method and low pass filtered [2]. The joint level control program works as a server and

receives the stream of setpoints via message passing from the joint level control client, which is part of

the QRobot version of ARCL. The control can be switched to a zero gravity mode. In this mode, the

control only compensates for the gravity on the robot links instead of servoing to desired setpoints

[13]. The robot can be freely moved by hand in this mode, which is used to teach end-effector

positions and orientations with the teachpendant program.

5.3 Trajectory Generation and Robot Programming Interface

To achieve the goal of an entirely PC-based system, a high-level robot control API and trajectory

generator package for the PC is required. As there is no such package available for QNX, the quickest

solution is a port from a different platform. One of the most sophisticated and well-known high level

robot control libraries is RCCL. John Lloyd, one of the developers of RCCL, had unsuccessfully tried

to port RCCL to QNX. For this reason, RCCL was not considered for use in this project.

The Advanced Robot Control Library (ARCL), developed by Peter Corke at CSIRO [14][15], is

not as extensive as RCCL, but provides similar functionality. ARCL seemed to be more suitable for a

QNX port, because its modular architecture separates platform dependent and platform independent

parts. ARCL was developed for Unix workstations. Porting ARCL to QNX and integrating it with the

QRobot system required significant effort. This effort included making the C source code C++ syntax

compliant, debugging the existing ARCL source code, developing the platform specific part of ARCL

(called the ARCL machine interface, or AMI), and embedding the ARCL modules into the real-time

environment of QNX and the client/server architecture.

 14

The main challenge of porting ARCL was writing the AMI for QNX. The AMI is the platform

dependent module that contains functions for multitasking, timing and hardware interfacing of the

manipulator. Two problems occurred when developing the AMI for QNX. First, the architecture of the

AMI requires that both the trajectory generator task and the user program task share variables. This

can be implemented either by using shared memory between these tasks or by using threads. Since

ARCL was not designed to take advantage of shared memory, the development of a special memory

manager would have been the only solution. Threads, the other approach, are multiple instances of a

process that share the same address space. QNX supports threads, but in a limited fashion, and not all

library functions are “thread-safe”. Tests showed that the thread-based solution, which is much easier

to implement than the shared memory manager, was adequate.

Semaphore management posed the other significant problem. QNX semaphores do not behave in

accordance with the ARCL specification. This was rectified by modifying the way ARCL uses

semaphores. In addition, ARCL expects the OS to destroy all semaphores at program termination,

which is not the case with QNX. Consequently, over time, the system runs out of semaphores. To

solve this problem, a semaphore manager was added to the AMI to keep track of the semaphores in

use and to destroy them as the program terminates.

To integrate ARCL into the QRobot system, the QNX/QRobot AMI was constructed to contain the

following functions:

• A joint level control client sends the trajectory to the joint level control server.

• Functionality was added to connect to the robot simulator running on the Windows NT PC. Sockets

were used as the communication mechanism. There are two modes of operation, test mode and

standard mode. Test mode allows running robot control programs with the simulator alone, without

accessing hardware. This is useful for debugging robot programs without the risk of damaging the

 15

robot. In standard mode, the trajectory is sent to both the robot simulator and to the joint level

control, so it is possible to compare the movement of the real robot with the simulator. A

communication channel in the other direction, from the robot simulator to ARCL, was added to

allow the virtual operator interface (which is part of the robot simulator) to send disassembly

commands to the task level program.

• Force and torque information is used to trigger an emergency stop to minimize damage from

collisions between the end-effector and the workspace.

Rather than using ARCL’s limited functionality to control tools (there is only functionality to control

the gripper), a C++ class was developed for each tool. The tool classes use I/O board clients to control

the tools.

Although the port of ARCL achieved satisfactory results, it is not an ideal solution. The use of

threads is not 100% safe, since not all QNX library functions are “thread-safe”, although we never

identified any crashes that could be attributed to threads. If a user chooses to use a non thread-safe

function in one of his programs, the behavior of the system is undefined.

5.4 Robotic Utility Programs

To facilitate the use and calibration of the D&D system, a set of robot utility programs was developed.

Teachpendant: To learn the end-effector positions and orientations used in the D&D operation, a

teachpendant program was developed, see fig. 4. The teachpendant uses the zero-gravity mode of the

joint level controller, which allows the user to easily push the robot around in the workspace. Once a

position and orientation is found, it can be stored under a given name in a position list. It is possible to

leave the zero gravity mode at any time and move the robot to previously taught positions. The

 16

position list can be stored in an ASCII file for later use in the teachpendant, or for use from an ARCL

program.

PotVal: The PotVal utility performs the initial calibration procedure of the Puma 560 that relates

joint potentiometer readings to encoder readings.

PumaCal: The PumaCal utility performs encoder calibration after power up of the manipulator. It

determines the current position of the robot by using potentiometers and index pulses. This utility is

similar to RCCL’s pumacal utility [4], but performs the calibration in only a fraction of the time.

Figure 4. The QRobot teachpendant

 17

5.5 The Disassembly Program

A motor is used to demonstrate a simple disassembly. The objective is to remove the cap of the motor.

Fig. 5 shows the steps performed by the system:

1. Remove the first bolt. The gator grip is used to unscrew the bolt. Since the bolt usually stays in the

housing, the operator has the additional option to remove the unscrewed bolt with the gripper and

drop it into a container.

2. Remove the second bolt in the same fashion as described in step 1.

3. Perform a torch cut. In the experiment, the torch is simulated by a laser diode.

4. Remove the cap with the gripper and put it on the table.

The disassembly program is written in C++. For each disassembly step, via points are determined with

the teachpendant program and saved to a file. The disassembly program reads this file and creates

transformations and position equations for each via point. The position equations are the input to the

ARCL move function calls. Each disassembly step consists of picking up the right tool from the tool

rack, performing the operation, and returning the tool to the rack. Some special functions are defined

to allow the operator to intervene in case the system fails to complete a step. These functions include

manually getting or returning a tool and manually locking or releasing a tool.

1 2

34

Figure 5. Steps to disassemble the motor

 18

5.6 The Operator Programs

Four operator interface programs offer different control and feedback functions. Observation windows

and the video operator interface run on the same PC as the robot control, but at a lower priority. They

use Photon, the windowing system for QNX. Photon provides functionality similar to the X Window

System and Xt. To accelerate GUI development under Photon, the C++ class library QWidgets++ [16]

was utilized.

Observation Windows. The observation window (see fig. 6) provides live visual feedback from a

video camera. When using the WebCam, the observation window offers additional functionality.

Clicking in the image centers the PTU about that point. The buttons at the bottom of the window

control the WebCam’s zoom lens. It is possible to start multiple observation windows and connect

them to the same or different cameras. Since the observation windows use message-passing based

client/server communication, the camera servers can be distributed over multiple PCs. The

disadvantage of message passing is reduced speed in the image transfer. Depending on the PC’s

performance, image size, image color depth, network traffic, and the video display driver, the

observation window displays 1-5 frames per second.

Web Camera. The WebCam is a World Wide Web based visual feedback, with similar

functionality to the observation windows. The Apache web server starts a CGI program whenever the

web page is accessed. The request for the web page contains the desired pan/tilt angles and the desired

zoom factor as parameters. The CGI program moves the PTU to the desired position, sets the zoom

factor, and captures an image. This image is then converted to JPEG format, and a web page is

dynamically created to show the image. The client/server architecture allows multiple observation

windows and any number of web browsers to request images at the same time. The advantage of the

 19

WebCam is the accessibility from any Internet connected computer. The disadvantage is the lack of

continuous and fast updates of the image.

Figure 6. Observation window

Video Operator Interface. The video operator interface provides even unskilled operators an easy-

to-use interface to control the disassembly tasks. The video image is used to trigger disassembly

operations. The operator moves the mouse cursor over a certain part of the motor that he wants to

disassemble. The operator interface then displays a pop-up menu with a list of disassembly options.

For example, when the operator moves the mouse over the motor end cap, the end cap is highlighted,

and a menu pops up with the menu item “Remove Cap” (see fig. 7). After the operator selects an

operation, the program begins to perform the task and shows progress information in a dialog. As the

 20

disassembly is being performed, the operator is able to supervise the operation in the observation

windows. In case the disassembly of a part is unsuccessful, the operation can be repeated.

The image-based selection of disassembly operations is convenient for the operator, but it also

requires that the system knows where the parts of the object are located in the image. The Image

Processing group at Clemson University is investigating the use of advanced image processing and

3D-object virtualization techniques to automatically identify and locate these parts for the disassembly

task [3]. This research is not addressed in this paper. To demonstrate the basic concept of the operator

interface, the coordinates are manually determined in the current system.

Figure 7. Video operator interface

Virtual Operator Interface/Robot Simulator. The video operator interface works fine with a

workpiece such as the motor and the overhead camera. However, using different camera perspectives

or more complex workpieces can result in hidden parts that can not be viewed and selected by the

operator. For instance, the front perspective of the motor would not show the second bolt at the back of

 21

the motor. VR based operator interfaces overcome this problem. Using a VR interface, the operator is

able to navigate within the virtual scene and view parts from different angles. The QRobot virtual

operator interface is integrated into the robot simulator.

Fig. 8 shows a screenshot of the robot simulator. Since there are no hardware accelerated 3D

graphics libraries available for QNX, the program runs under Windows NT and uses OpenGL, a

standard 3D graphics library [17]. The 3D scene consists of two Puma 560 robots, the toolrack and the

workpiece. The main window is split into three parts that show the scene from different perspectives.

In each sub-window, the operator can navigate by using the mouse, selecting and defining custom

viewpoints or selecting the end-effector view. The latter option simulates the view of a camera

mounted on the end-effector. The level of detail in the display can be reduced to accelerate the display.

ARCL continuously sends the current joint position to the robot simulator, using the TCP/IP

connection. Hence, the robot simulator is able to displays the robot’s joints at the current position.

A special technique of 3D programming, called object picking, gives the operator functionality

similar to the video based operator interface. Moving the mouse cursor over parts of the motor

highlights these parts. Clicking on the parts displays menus with disassembly options. Once the

operator selects a disassembly option, the software encodes this operation into a command word, and

sends it to the video based operator interface, which initiates the operation. This data transport uses the

same TCP/IP connection that is used to send the trajectory information. Progress reports are also sent

back to update the progress dialog box as shown in fig. 8.

The disadvantage of the current version of the robot simulator/operator interface is that the scene is

hard-coded in the simulator. Changing the scene is not trivial and requires extensive programming

effort. However, this compromise establishes a working system at this stage of the project.

 22

Figure 8. The virtual operator interface/robot simulator

6. Experimental Results

There are three aspects of the experiment. The first aspect is the reliability of the control system and

the mechanical parts. With regard to reliablility, the system was successful in repeating the

disassembly multiple times without any problems. The joint level control was capable of precisely

moving different tools of different weights. Fig. 9 shows the desired position trajectories of link 3 for

the bolt removal task in the top graph. The bottom graph displays the tracking error. The middle graph

shows the tracking error for a test run without the bolt actually being present. The actual bolt removal

 23

happens from t = 20 sec to t = 30 sec. Comparing the tracking error in the middle and bottom graph

illustrates that the effect of the force created by removing the bolt does not affect the control

significantly.

The second aspect is the usability and reliability of the system used by an untrained operator. The

experiment shows that both video and VR based operator interfaces provide an intuitive way to control

the D&D operation. Only a few mouse clicks are necessary to guide the complete disassembly.

Problems occur when the operator needs to recover from a system failure or a handling error.

Generally, the capabilities of aborting operations and returning to the initial state are limited. Often,

the robot, the tools, or workpieces have to be moved back manually to initial positions.

Finally, the most interesting part is the stability of the GUI and the real-time control programs

running together. The system shows high stability in this issue. For example, it is possible to open

many observation windows while the D&D task is in progress. The observation windows slow the

GUI down, but they do not negatively impact the control or the disassembly task.

7. Conclusions

The QRobot system described in this paper demonstrates the feasibility of using a PC for the various

tasks required in telerobotic semi-autonomous D&D operations. It was shown how real-time tasks,

such as the joint control, can be integrated with non real-time tasks, such as a GUI, on a single cost-

effective hardware platform. The client/server concept, using a modern real-time OS as its platform,

provides a flexible method of communication for these tasks. The operator interfaces and the

teleobservation programs provide an easy-to-use telerobotic operator environment.

Future research is motivated by the limitations of the system, which originate in its software

components and its architecture. ARCL as a high-level control library is not a satisfactory, robust,

 24

general-purpose solution. Although QRobot is entirely PC based, it still uses two OSs: QNX (for all

functions except the 3D robot simulator) and Windows NT (for the 3D robot simulator). This

introduces higher complexity and cost. It would be desirable to have all components running under the

same OS. Additionally, the system was developed by integrating different software components. All

components have been specifically modified to work together, which leads to a static architecture. For

example, extending the system to a different robot type would result in modifications of ARCL, the

joint level control, the robot simulator and the way they communicate. The biggest problem is the

limited flexibility in adapting the system to different applications. Basically, certain parts of QRobot

(e.g., the robot simulator, the GUI, the tool clients, etc.) are specific to the D&D example of the motor

disassembly. Adapting the system to a different application requires some knowledge of its internal

workings.

To overcome these problems, the current research targets the specification, design, and

implementation of a new robot control environment. The framework would be object oriented, using

the language C++. Objects would represent the different components of the system, for example the

trajectory generator, manipulators, tools and sensors. Object oriented programming techniques like

inheritance could be used to reuse code and easily extend the system without knowing its internals,

thereby avoiding recompiling the whole system. The framework would provide functionality for object

management, communication, and real-time task management. Finally, the goal would be the

implementation of the complete robot control system under one OS to achieve a single PC, single OS

solution. This new robot control environment would use the concepts and advantages of a purely PC

based system as described in this paper, but improve the design to utilize state-of-the-art software

development tools and techniques. The resultant system would allow researchers to focus on their

actual application rather than the technical framework.

 25

Figure 9. Joint 3 trajectories and tracking errors for the bolt removal

 26

Acknowledgements

This work is supported in part by the U.S. NSF Grants DMI-9457967, CMS-9634796, ECS-9619785,

DMI-9813213, EPS-9630167, DOE Grant DE-FG07-96ER14728, ONR Grant N00014-99-1-0589, and

a DOC Grant.

References

[1] Vladimir Lumelsky, On human performance in telerobotics, IEEE Transactions on Systems,

Man and Cybernetics, 21(5).

[2] N. Costescu, M. Loffler, E. Zergeroglu, and D. Dawson, QRobot - A Multitasking PC Based

Robot Control System, Microcomputer Applications Journal Special Issue on Robotics, 18(1),

pages 13-22.

[3] http://ece.clemson.edu/iaal/doeweb/doeweb.htm

[4] J. Lloyd, Implementation of a Robot Control Development Environment, Masters Thesis,

McGill University, Dec.1985

[5] Unimation Inc., Danbury, Connecticut, 500 Series Equipment and Programming Manual, 1983.

[6] N. Costescu, D. M. Dawson, and M. Loffler, QMotor 2.0 - A PC Based Real-Time Multitasking

Graphical Control Environment, June 1999 IEEE Control Systems Magazine, 19(3), pages 68 -

76.

 27

[7] D. Hildebrand, An Architectural Overview of QNX, Proceedings of the Usenix Workship on

Micro-Kernels & Other Kernel Architectures, Seattle, April 1992.

[8] P. Corke, The Unimation Puma Servo System, CSIRO Division of Manufacturing Technology,

Preston, Australia.

[9] Trident Robotics and Research, Inc., 2516 Matterhorn Drive, Wexford, PA 15090-7962, (412)

934-8348, http://www.cs.cmu.edu/~deadslug/puma.html

[10] Quanser Consulting, 102 George Street, Hamilton, Ontario, CANADA L8P 1E2, Tel: 1 905 527

5208, Fax: 1 905 570 1906, http://www.quanser.com.

[11] QSSL, Corporate Headquarters, 175 Terence Matthews Crescent, Kanata, Ontario K2M 1W8

Canada, Tel: +1 800-676-0566 or +1 613-591-0931, Fax: +1 613-591-3579, Email:

info@qnx.com, http://www.qnx.com (QNX web site)

[12] N. Costescu, M. Loffler, M. Feemster, and D. Dawson, QMotor 3.0 – An Object Oriented

System for PC Control Program Implementation and Tuning, Proc. of the American Control

Conference, Arlington, VA, June, 2001, to appear.

[13] B. Armstrong, O. Khatib, J. Burdick, The Explicit Dynamic Model and Inertial Parameters of

the PUMA 560 Arm, Proc. IEEE int. conf. Robotics and Automation 1 (1986) pp. 510-518

[14] P. Corke, The ARCL Robot Programming System, CSIRO Division of Manufacturing

Technology.

[15] P. Corke, P. Dunn, and R. Kirkham, An ARCL Tutorial, CSIRO Division of Manufacturing

Technology, Preston, Australia, 1992.

 28

[16] Quality Real-Time Systems, LLC., 6312 Seven Corners Center, Falls Church, VA 22044,

Website: http://qrts.com.

[17] J. Neider, T. Davis, and M. Woo, OpenGL Programming Guide, Addison-Wesley Publishing

Company, New York, 1993.

Biographies

Markus Loffler was born in 1971, in Munich, Germany. He received his diploma in Electrical

Engineering from the Technische Universitaet München (Technical University of Munich). After

finishing his thesis for diploma at Clemson University, South Carolina, he joined the Robotics and

Mechatronics Group at Clemson to work on his Ph.D. degree. Besides being involved in various

software projects for PC based real-time control and sensor integration, his research focuses on new

object oriented control concepts for robot manipulators.

Nicolae P. Costescu was born in 1969, in Bucharest, Romania. In 1990, he received a B.S. in

Computer Science from Virginia Polytechnic Institute. He completed a M.S. in Computer Engineering

at Clemson University in 1994 and a Ph.D. in Computer Engineering at Clemson University in 2000.

Dr. Costescu is currently President of Quality Real-Time Systems, LLC, a company specializing in

real-time software for control and robotic applications.

Erkan Zergeroglu was born in 1970 in Artvin-Yusufeli Turkey. He received his MS degree in

Electrical Engineering from Middle East Technical University, Turkey in 1996 and Ph.D. degree from

 29

Clemson University, SC in 2000 where he also served as a graduate research assistant. He is currently

employed at Lucent Technology Sturbrigde - Optical Fiber Solutions as a Control Research Engineer.

His research interests include model based control techniques, mobile robots and applied robotics.

Darren M. Dawson was born in 1962, in Macon, Georgia. He received an Associate Degree in

Mathematics from Macon Junior College in 1982 and a B.S. Degree in Electrical Engineering from the

Georgia Institute of Technology in 1984. He then worked for Westinghouse as a control engineer from

1985 to 1987. In 1987, he returned to the Georgia Institute of Technology where he received the Ph.D.

Degree in Electrical Engineering in March 1990. During this time, he also served as a

research/teaching assistant. In July 1990, he joined the Electrical and Computer Engineering

Department and the Center for Advanced Manufacturing (CAM) at Clemson University where he

currently holds the position of Professor. Under the CAM director's supervision, he currently leads the

Robotics and Manufacturing Automation Laboratory which is jointly operated by the Electrical and

Mechanical Engineering departments. His main research interests are in the fields of nonlinear based

robust, adaptive, and learning control with application to electromechanical systems including robot

manipulators, motor drives, magnetic bearings, flexible cables, flexible beams, and high-speed

transport systems.

