

Design and Implementation of the Robotic Platform

Markus S. Loffler, Vilas K. Chitrakaran, and Darren M. Dawson

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC29631-0915, USA
E-mail: [loffler, cvilas, ddawson]@ces.clemson.edu

Abstract – This paper describes the design and implementation
of the Robotic Platform, an object-oriented development
platform for robotic applications. The Robotic Platform
includes servo control, trajectory generation, 3D simulation, a
graphical user interface, and a math library. As opposed to
distributed solutions, the Robotic Platform implements all these
components on a single hardware platform (a standard PC),
with a single programming language (C++), and on a single
operating system (the QNX Real-Time Platform) while
guaranteeing deterministic real-time performance. This design
leads to an open architecture that is less complex, easier to use,
and easier to extend.

1. INTRODUCTION
Robot control systems are very demanding with regard to
software and hardware performance because their building
blocks cover a wide range of disciplines found in robotics and
software development (e.g., real-time programming, 3D
graphics, trajectory generation, etc.). Hence, it is desirable to
create a common platform that can be reused by researchers for
different applications. Due to the lack of flexibility and
performance of proprietary vendor-supplied robot control
languages, previous research focused on building robot control
libraries on top of a commonly used programming language
(e.g., “C”) that was executed on a Unix workstation. RCCL [1]
and ARCL [2] are examples of such libraries. Even though this
approach leads to a higher flexibility and performance, many
robot control platforms developed in the 80’s and early 90’s
were inherently complex due to the limitations of software
packages and hardware components of that time. That is, most
operating systems did not support real-time programming
(fostering projects like RCI [1] and Chimera [3]). In addition,
procedural programming languages like “C” tend to reach their
limits with regard to reusability for complex projects;
furthermore, the limited performance of hardware components
forced system developers to utilize distributed architectures that
integrated a mix of proprietary hardware and software.
Over the last ten years, many innovations have occurred in the
computing area. Specifically, the advent of object-oriented
software design [4] facilitated the management of more complex
projects while also fostering code reuse and flexibility. For
example, robot control libraries like RIPE [5], OSCAR [6], and
ZERO++ [7] utilized object-oriented techniques in robot
programming. We have also witnessed the proliferation of real-
time Unix-like operating systems for the PC [8], which facilitate
the replacement of proprietary hardware components for real-
time control [9]. In the hardware sector, we have witnessed the
advent of high-speed, low-cost PCs, fast 3D graphics video
boards, and inexpensive motion control cards. Consequently, the
PC platform now provides versatile functionality, and hence,
makes complex software architectures and proprietary hardware
components superfluous in most cases. The QMotor Robotic
Toolkit (QMotor RTK) [10], for example, integrates real-time

manipulator control and the graphical user interface (GUI) all on
a single PC platform.
Despite the extensive functionality of the PC platform, much of
the research in robot control software utilizes distributed
architectures [5-7]. Besides the obvious advantages of
distributed systems (e.g., more computational power), there are
several disadvantages. Specifically, a distributed architecture
increases the complexity of the software significantly.
Additionally, hard real-time behavior over network connections
often requires expensive proprietary hardware. Generally, the
overall hardware cost is higher and users have to familiarize
themselves with different hardware architectures and operating
systems. Even though many platforms developed in the last
couple of years attempted to be extensible, these platforms are
seldom used and reused. Apparently, engineers consider it easier
to develop their applications from scratch. Indeed, from our own
experience, the learning curve of installing, learning, and
modifying previous robot control platforms is steep.
Given the above remarks, the Robotic Platform is the first
platform that has been designed to integrate servo control loops,
trajectory generation, task level programs, GUI programs, and
3D simulation in a homogeneous software architecture. That is,
only one hardware platform (the PC), one operating system (the
QNX Real-Time Platform [8]), and one programming language
(C++ [11]) are used. This type of architecture has the following
advantages:
Simplicity. A homogeneous non-distributed architecture is much
smaller and simpler than a distributed inhomogeneous
architecture. It is easier to install, easier to understand, and easier
to extend.
Flexibility at all Levels. Every component of the Robotic
Platform is open for extensions and modifications. Many past
platforms have utilized an open architecture at some levels, but
other levels (e.g., the servo control) had been implemented on
proprietary hardware such that they could not be modified.
Cost. The Robotic Platform requires fewer hardware components
than a distributed platform. Basically, a single PC with one or
more input/output (I/O) boards is sufficient. Additionally, PC
hardware is very cost effective.

2. POWERFUL TOOLS AND TECHNOLOGIES – THE

BASIS FOR THE ROBOTIC PLATFORM
To reduce development effort and complexity, the Robotic
Platform is based on general-purpose tools and technologies.
PC Technology. While in the past only expensive UNIX
workstations provided the processing power necessary to control
robotic systems, the PC has caught up or even exceeded the
performance of workstations [9]. Compared to UNIX
workstations, a PC based system allows for a greater variety of
hardware and software components. Additionally, these
components and the PC itself are usually cheaper than their
UNIX counterparts.

The QNX Real-Time Platform. The QNX Real-Time Platform
(RTP) by QSSL [8] consists of the QNX6/Neutrino operating
system and additional components for development and
multimedia. QNX6 is an advanced real-time operating system
that provides a modern microkernel-based architecture, a POSIX
compliant programming interface, self-hosted development, 3D
graphics capabilities and an easy device driver architecture. The
RTP is also very cost-effective as it is free for non-commercial
use and runs on low-cost standard PCs.
Object-Oriented Programming in C++. With regard to
developing robot control software, object-oriented programming
has several benefits over procedural programming. First, it
provides language constructs that allow for a much easier
programming interface. For example, a matrix multiplication can
be expressed by a simple “*”, similar to MATLAB
programming. Second, object-oriented programming allows for a
system architecture that is very flexible but yet simple. That is,
the components (classes) of the system can have a built-in
default behavior and default settings. The programmer can
utilize this default behavior to reduce the code size or override it
for specific applications. Finally, object-oriented programming
supports generic programming, which facilitates the
development of components that are independent from a specific
implementation (e.g., a generic class “Manipulator” will
work with different manipulator types). All of the above benefits
are based on the general concepts of object-oriented
programming: i) abstraction, ii) encapsulation, iii)
polymorphism, and iv) inheritance [4, 10]. The language of
choice is C++, as it provides the whole spectrum of object-
oriented concepts while maintaining high performance [11].
Open Inventor. Open Inventor [12], developed by Silicon
Graphics, is an object-oriented C++ library for creating and
animating 3D graphics. Open Inventor minimizes development
effort, as it is able to load 3D models that are created in the
Virtual Reality Modeling Language (VRML) format. A variety
of software packages are available that facilitate the construction
of 3D VRML models that represent robotic components. The
Robotic Platform also utilizes the functionality of Open Inventor
to animate these components.
The QMotor System. Implementation of control strategies
requires the capability to establish a deterministic real-time
control loop, to log data, to tune control parameters, and to plot
signals. For this purpose, the graphical control environment
QMotor [13] is used for the Robotic Platform.

3. OVERVIEW OF THE DESIGN
Each component of the Robotic Platform (e.g., manipulators, the
trajectory generator, etc.) is modeled by a C++ class. A C++
class definition combines the data and the functions related to
that component. For example, the class “Puma560” contains the
data of a Puma 560 robot (e.g., the current joint position) as well
as functions related to the Puma (e.g., enabling of the arm
power) [10]. Hence, the design of the Robotic Platform results
from grouping data and functions in a number of classes in a
meaningful and intuitive way. A class can use parts of the
functionality and the data of another class (called the base class)
by deriving this class from the base class. This process is called
inheritance, and it attributes heavily to code reuse and eliminates
redundancy in the system. To extend the system, the programmer
creates new classes. Usually, new classes will be derived from
one of the already existing classes to minimize coding effort.

The classes of the Robotic Platform include GUI components
and 3D modeling for graphical simulation. These types of
components were traditionally found in separate programs (e.g.,
see the RCCL robot simulator [1]). However, by including them
in the same class, we can achieve a tight integration of the GUI,
3D modeling, and other functional parts. Additionally, system
extensions automatically include GUI components and 3D
modeling.
The main class hierarchy diagram of the Robotic Platform is
shown in Figure 1. Each arrow is drawn from the derived class to
the parent class; hence, the further to the left a class is listed, the
more generic it is. The classes of the Robotic Platform can be
separated into the following categories:

The Core Classes. The classes RoboticObject,
FunctionalObject, and PhysicalObject build the
basis of all robotic objects. The classes RoboticPlatform
and ObjectManager contain functionality for overall
management of robot control programs.
Generic Robotic Classes. Derived from the core classes are a
number of generic robotic classes. These classes cannot be
instantiated. Rather, these classes serve as base classes that
implement common functionality while also presenting a generic
interface to the programmer (i.e., these classes can be used to
create programs that are independent from the specific hardware
or the specific algorithm).
Specific Robotic Classes. Derived from the generic robotic
classes are classes that implement a specific piece of hardware
(e.g., the class Puma560 implements the Puma 560 robot) or a
specific functional component (e.g., the class
DefaultPositionControl implements a proportional
integral derivative (PID) position control).
The ControlProgram Class. This class is part of the QMotor
system. It is the basis for all real-time control loops. Classes that
require a real-time control loop are derived from the
ControlProgram class.

RoboticObject

FunctionalObject

PhysicalObject

Manipulator

Trajectory
Generator

Gripper

ToolChanger

ForceTorqueSensor

ServoControl

Core Classes Generic Robotic Classes Specific Robotic Classes

Default
Manipulator

DefaultTrajectoryGenerator

Puma560

BarrettBase

BarrettHand

AtiFTSensor

DefaultPositionControl

BarrettArmWAM

Queue
Trajectory
Generator

OnOffTool

DefaultGripper

DefaultToolChangerControlProgram

QMotor

RoboticPlatform

ObjectManager

Figure 1. Class Hierarchy of the Robotic Platform

In addition to the classes shown in Figure 1, the Robotic
Platform provides the classes of the math library, the
manipulator model classes, and several utility classes. These
classes and their class hierarchy will be described later in this
paper.

In a robot control program, the programmer instantiates objects
from classes. The programmer can instantiate as many objects as
desired from the same class. For example, it is straightforward to
operate two Puma robots by simply creating two objects of the
class Puma560. As soon as objects are created, the programmer
can employ their functionality. The Object Manager (see Figure
2) maintains a list of all currently instantiated objects. With the
object manager, it is possible to initiate functionality on multiple
objects (e.g., to shutdown all objects). The Scene Viewer is the
default GUI of the Robotic Platform. It contains windows to
view the 3D scene of the robotic work cell and a list of all
objects. The QMotor GUI can be optionally utilized for data
logging, plotting and control parameter tuning.
In a robotic system, different components are related to each
other. To reflect this fact, object relationships are established
between objects. For example, objects can specify their physical
connection to each other. Object relationships are implemented
by C++ pointers to the related object. The object relationships
are indicated by arrows in Figure 2.
The Robotic Platform utilizes a global configuration file to
specify the system’s configuration. For each object, the
configuration file lists the object name in brackets, the class
name of the object, and the object settings (see Figure 3).

Figure 2. Run-Time Architecture of the Robotic Platform

[leader]
class Puma560
position 0 0 0

[follower]
class BarrettArm
simulationMode on

[gripper]
class BarrettHand
port /dev/ser1

Figure 3. An Example Global Configuration File

4. THE CORE CLASSES
The class RoboticObject is the base class for all robotic
classes. It defines a generic interface (i.e., a set of functions that
can be used with all robotic classes of the Robotic Platform). For
example, a program can use the createControlPanel()
function to tell an object of either the class Puma560 or the
class Gripper to display the appropriate control panel.
Specifically, the class RoboticObject defines i) error
handling, ii) object name handling, iii) configuration
management, iv) object shutdown, v) the control panel, and vi)
thread management. Note that the actual functionality is usually

implemented in the derived class. However, the class
RoboticObject also implements simple default functionality.

The class PhysicalObject is derived from the class
RoboticObject. It is the base class for all classes that
represent physical objects (e.g., manipulators, sensors, grippers,
etc.). Specifically, the class PhysicalObject defines the
following generic functionality:
- 3D Visualization. Every physical object can provide its Open

Inventor 3D model. The Scene Viewer loops through all
physical objects to create the entire 3D scene.

- Object Connections. A physical object can specify another
object as a mounting location. By using this object
relationship, the Scene Viewer is able to draw objects at the
right location (e.g., the gripper being mounted on the end-
effector of the manipulator).

- Position and Orientation. The programmer can set the
absolute location of the object in the work cell (or the
mounting location, if an object connection is specified).

- Simulation Mode. Every physical object can be locked into
simulation mode. That is, the object does not perform any
hardware I/O; instead, its behavior is simulated.

The class FunctionalObject currently does not contain any
functionality. It is only added as a symmetric counterpart to the
class PhysicalObject. Functional robotic classes like the
class TrajectoryGenerator are derived from the class
FunctionalObject.

5. CLASSES RELATED TO MANIPULATORS
The central components of any robotic work cell are
manipulators. The class Manipulator is a generic class that
defines common functionality of manipulators with any number
of joints. Derived from the class Manipulator is the class
DefaultManipulator, which contains the default
implementation for open-architecture manipulators. Open-
architecture manipulators provide access to the current joint
position and the control torque/force of the manipulator and
hence, allow for custom servo control algorithms. Derived from
the class DefaultManipulator are the classes that
implement specific manipulator types. Currently, two
manipulators are supported: the Puma 560 robot and the Barrett
Whole Arm Manipulator (WAM) in both the 4-link and 7-link
configuration. More information about the specific control
implementation of these robot manipulators can be found in [10].

The class DefaultManipulator reads the current joint
position and outputs the control signal continuously in a QMotor
control loop. The actual calculation of the servo control
algorithm is contained in a separate servo control object. The
class of this object is derived from the class ServoControl,
which defines the interface of a servo control. The default servo
control is defined in the class DefaultPositionControl,
which implements a PID position control with friction
compensation. Manipulator classes like Puma560 or WAM
automatically instantiate an object of the class
DefaultPositionControl for the convenience of the
programmer. However, the programmer can switch to a different
servo control anytime.
For the simulation of the manipulators, their dynamic model is
required. Additionally, for Cartesian motion, forward/inverse
kinematics and the calculation of the Jacobian matrix are needed.

User

Robot
Control

Program

All these functions are located in the ManipulatorModel
classes. The class hierarchy of the ManipulatorModel
classes is displayed in Figure 4.

ManipulatorModel

PumaModel BarrettArmModel WAMModel

Figure 4. The ManipulatorModel Classes

The trajectory generation is also performed in separate classes.
The class TrajectoryGenerator defines the interface of a
generic trajectory generator. A trajectory generator is any object
that creates a continuous stream of setpoints and provides this
stream to a manipulator. The manipulator calls the
getCurrentSetpoint() function of the trajectory
generator to determine the current desired position. It is also
possible to switch between multiple trajectory generators. The
class QueueTrajectoryGenerator, which is derived from
the class TrajectoryGenerator, is a generic interface of a
trajectory generator that creates the trajectory along via and
target points. The class DefaultTrajectoryGenerator,
which is derived from QueueTrajectoryGenerator, is the
specific implementation of a trajectory generator that
interpolates both in joint space and Cartesian space, including
path blending between two motion segments at the via points.

6. THE END-EFFECTOR CLASSES
Several robotic classes refer to end-effectors, as given below:

Gripper Classes. The class Gripper is the generic interface
class of a gripper. It defines the functions open(), close(),
and relax(). The class DefaultGripper utilizes two
digital output lines to control the gripper, one digital line to open
the gripper, and one to close it. The class BarrettHand is
used to operate the BarrettHand.
Force/Torque Sensor Classes. The generic base class
ForceTorqueSensor defines the interface of a force/torque
sensor. That is, it defines functions to read forces and torques.
The class AtiFTSensor is the implementation of the ATI
Gamma 30/100 Force/Torque sensor.

Toolchanger Classes. The class ToolChanger is the generic
interface class of a toolchanger. It defines the functions
lock(), unlock(), and relax(). The class
DefaultToolChanger uses two digital output lines to
control the lock and unlock function of the toolchanger.

7. THE OBJECT MANAGER
The class ObjectManager implements the object manager.
Every time a new object is instantiated in the user’s robot control
program, the object registers itself with the object manager.
Similarly, every time an object is destroyed, it is removed from
the object list that is maintained by the object manager. The
object manager contains functionality to loop through this list to
perform operations on multiple objects. For example, the Scene
Viewer retrieves a list of all objects that are derived from the
class PhysicalObject to render each of them, and thereby,
is able to render the entire 3D scene.
The functionality of the object manager is also necessary to
allow for generic code. Generic code operates any object (e.g., a

manipulator object of class Puma) through the appropriate
interface class (e.g., the class Manipulator) by using C++
virtual functions. Hence, generic code does not need to be
changed when an object of a different class is used (e.g., the
class WAM), as long as this object is derived from the same
interface class. Generic code is very useful for code-reuse (e.g.,
only a single generic trajectory generator must be written which
can be used with different manipulator types). The following
excerpt of generic code is manipulator independent code that
works with either the Puma robot, the WAM, or any robot that is
added in the future.

 Manipulator *robot;
 ObjectManager om;

 robot = om.createDerivedObject<Manipulator>(“leader”);

 cout << “Current End-Effector Coordinate Frame: “
 << robot->getEndEffectorTransform();

The above code first calls the function
createDerivedObject() to create an object of either the
classes Puma560, BarrettArm, or WAM. Then, it operates this
object via a pointer to the generic base class (i.e.,
Manipulator *). In order to create the desired object, the
createDerivedObject() function looks for the object
name in the global configuration file (see Figure 3). Then, it
reads the class name of the object from the configuration file and
creates an object of this class. To do so, the framework of the
Robotic Platform maintains a list of all classes in the program.
Hence, to switch to a different manipulator type, only the class
name in the global configuration file has to be changed when
using a generic program.

8. THE CONCURRENCY MODEL
While it is often sufficient for many software systems to run as a
single task, robotic systems require components like the servo
control to be executed concurrently with other components (e.g.,
the trajectory generator). The Robotic Platform runs all
concurrent tasks on the same PC, within a single robot control
program. This program spawns threads if concurrent execution is
required. Once the program terminates, all threads are
automatically terminated. Figure 5 shows an example of how a
user program spawns multiple threads.

Servo control
loop

Create a new
manipulator

creates
new thread

User program

Thread 1Thread 2

Specify target
points

Initialize the
Robotic
Platform

Scene
Viewer

creates
new thread

Thread 3

Priority 9 Priority 10 Priority 27

Figure 5. Creating New Threads for Concurrency

At program start, only thread 1 is executing. At the initialization
of the Robotic Platform library, a new thread is created that

executes the 3D Scene Viewer. Then, the user’s robot control
program utilizes a new object of a manipulator class. The
creation of this manipulator object automatically spawns a third
thread for the servo control loop. Hence, the first thread can go
ahead and specify target points for the manipulator, while the
servo control loop and the Scene Viewer run in the background.
To ensure real-time behavior of time critical tasks, the threads
run at different priorities (e.g., the servo control loop runs at the
high priority 27). To allow for synchronized communication
between the threads, message passing (as provided by the classes
Client and Server) and standard thread synchronization
mechanisms are used (as implemented in the classes Barrier
and ReaderWriterLock).

9. CONTROL IMPLEMENTATION WITH QMOTOR
QMotor [13] is a complete environment for implementing and
tuning control strategies. To implement a real-time control loop,
the programmer derives a class from the class
ControlProgram and reimplements several functions that
perform the control calculation and the housekeeping. Once a
control program is implemented and compiled, the user can start
up the QMotor GUI, load the control program, start it, and tune
the control strategy from the control parameter window.
Furthermore, the user can open multiple real-time plot windows
(see Figure 6) and set logging modes. To utilize QMotor for the
Robotic Platform, classes that require a real-time control loop
(e.g., DefaultManipulator) are derived from QMotor’s
ControlProgram class.

Figure 6. The QMotor Plot Window

10. THE MATH LIBRARY
Previous robot control libraries often introduced their own
specific robotic data types. Most of these data types are based on
vectors or matrices (e.g., a homogeneous transformation is a 4x4
matrix). Hence, it is more feasible and flexible to use a general
C++ matrix library and define robotic types on top of it. Most of
the matrix libraries available for C++ use dynamic memory
allocation, which risks the loss of deterministic real-time
response [10]. To overcome this disadvantage, special real-time
matrix classes (see Figure 7) were developed for the Robotic
Platform that use templates for the matrix size. Consequently,
the matrix size is known at compile time and dynamic memory
allocation is not required. The classes MatrixBase,
VectorBase, Matrix, ColumnVector, RowVector, and
Vector are also parameterized with the data type of the
elements. The default element data type is double, which is the
standard floating-point data type of the Robotic Platform. The

classes MatrixBase and VectorBase are pure virtual base
classes that allow for manipulation of matrices and vectors of an
unknown size. Matrices and vectors of an unknown size are
required during generic manipulator programming. The class
Transform implements a homogenous 4x4 matrix, which is
typically used to represent coordinate frames in robotic
applications. The class MathException is used for error-
recovery. The example program shown in Figure 8 performs a
common task in robotics: Calculating a position equation. This
example shows that programming with the math library is very
intuitive.

MatrixBase<T>

Matrix<rows, columns, T>

ColumnVector<size, T> TransformRowVector<size, T>

VectorBase<T> LowpassFilter<T>

Integrator<T>

Differentiator<T>

Vector<size, T>

HighpassFilter<T>

MathException

Figure 7. Class Hierarchy of the Math Library

Transform Z = translation(0, 0, 0.7);
Transform E = translation(0, 0, 0.1);
Transform W = translation(1, 0.2, 0.3)
 * xRotation(M_PI);
Transform P = translation(-0.5, 0, 0);

// Solve Z*T6*E == W*P
Transform T6;
T6 = inverse(Z) * W * P * inverse(E);

Figure 8. Example Program for the Matrix Classes

The math library also provides the classes LowpassFilter
and HighpassFilter for numeric filtering, and the classes
Differentiator and Integrator for numeric
differentiation and integration. These classes are parameterized
with the data type (i.e., they work with scalars, vectors, and
matrices).

11. THE GRAPHICAL USER INTERFACE
Whenever a program of the Robotic Platform is executed, the
Scene Viewer window opens up, displaying the 3D scene that
contains all objects created in the robot control program (see
Figure 9). To assemble the 3D scene, the Scene Viewer loops
through all physical objects and obtains their Open Inventor 3D
data. Then, the Scene Viewer uses the object connection
relationships to display the 3D objects at the right position.
Furthermore, the Scene Viewer continuously updates the 3D
scene with the current state of all objects (e.g., it uses the current
joint position of a manipulator to display the joints in the correct
position). Hence, the 3D scene always represents the current
state of the hardware (in simulation mode, the simulated state of
the hardware is represented). To select the best viewing position,
the user can navigate in the 3D scene using the mouse. The user
can also open the Object List window, which displays a list of all
objects that are currently instantiated by the robot control
program, including class name, object name, and object status.
Each object has an individual pop-up menu. This pop-menu
appears if the user right clicks on the object in the Scene Viewer
rendering area or the Object List window. The pop-up menu has
options to select 3D display modes and to open the object’s
control panel. Additionally, there are menu items that are

specific to the class of the object. For example, a gripper object
has additional menu items to open, close, and relax the gripper.
The Robotic Platform provides several GUI utility programs for
calibration and testing. Among others, the Teachpendant allows
the user to move the manipulator to desired target position in
zero gravity mode, and store these positions in a list. The
Teachpendant also utilizes the trajectory generator to move the
manipulator back to stored positions.

Figure 9. The Scene Viewer and the Object List Window

12. WRITING, COMPILING, LINKING, AND STARTING

ROBOT CONTROL PROGRAMS
A robot control program is first compiled and then linked to the
Robotic Platform library. Once the program is compiled and
linked, the user can start it from the command line. Figure 10
shows the listing of an example robot control program for a
simple pick and place operation.
Every robot control program first calls
RoboticPlatform::init(). This function initializes the
platform and starts up the Scene Viewer. Then, the user’s
program creates all objects that are required for the robotic task
(i.e., a gripper object, a Puma 560 object, and a trajectory
generator object are created). The last part of the example
program utilizes the trajectory generator object and the gripper
object to move the robot to the work piece, close the gripper,
pick up the work piece, and drop it at the target position.

#include “RoboticPlatform.hpp”

void main(int argc, char *argv[])
{
 RoboticPlatform::init(argc, argv);

 Puma560 puma;
 DefaultGripper gripper;

 DefaultTrajectoryGenerator<6> tragen;
 puma.setTrajectoryGenerator(tragen);
 Transform down = xRotation(M_PI); // End-effector
 // pointing down
 gripper.open();
 tragen.moveTo(translation(0, 0.5, 0) * down);
 tragen.stop(1);
 gripper.close();
 tragen.moveTo(translation(0.5, 0.5, 1) * down);
 tragen.moveTo(translation(1, 1, 0) * down);
 tragen.stop(1);
 gripper.open();
}

Figure 10. A Simple Pick and Place Example Program

13. CONCLUSIONS
As opposed to past distributed robot control platforms, the
Robotic Platform presents a homogeneous, non-distributed
object-oriented architecture. That is, based on PC technology
and the QNX RTP, all non real-time and real-time components
are integrated in a single C++ library. The architecture of the
Robotic Platform provides efficient integration and extensibility
of devices, control strategies, trajectory generation, and GUI
components. The Robotic Platform is built on the QMotor
control environment for data logging, control parameter tuning,
and real-time plotting. A new, real-time math library simplifies
operations and allow for an easy-to-use programming interface.
Built-in GUI components like the Scene Viewer and the control
panels provide for a comfortable operation of the Robotic
Platform and a quick ramp-up-time even for users that are
inexperienced in C++ programming.

REFERENCES

[1] J. Lloyd, M. Parker and R. McClain, “Extending the RCCL

Programming Environment to Multiple Robots and Processors”,
Proc. IEEE Int. Conf. Robotics & Automation, 1988, pp. 465–
469.

[2] P. Corke and R. Kirkham, “The ARCL Robot Programming
System”, Proc. Int. Conf. Robots for Competitive Industries,
Brisbane, Australia, pp. 484-493.

[3] D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “CHIMERA II: A
Real-Time UNIX-Compatible Multiprocessor Operating System
for Sensor-based Control Applications”, tech. report CMU-RI-
TR-89-24, Robotics Institute, Carnegie Mellon University,
September 1989.

[4] B. Stroustrup, “What is ‘Object-Oriented Programming’?“, Proc.
1st European Software Festival. February, 1991.

[5] D. J. Miller and R. C. Lennox, “An Object-Oriented Environment
for Robot System Architectures”, IEEE Control Systems February
1991, pp. 14-23.

[6] Chetan Kapoor, “A Reusable Operational Software Architecture
for Advanced Robotics”, Ph.D. thesis, University of Texas at
Austin, December 1996.

[7] C. Pelich & F. M. Wahl, “A Programming Environment for a
Multiprocessor-Net Based Robot Control Unit”, Proc. 10th Int.
Conf. on High Performance Computing, Ottawa, Canada, 1996.

[8] QSSL, Corporate Headquarters, 175 Terence Matthews Crescent,
Kanata, Ontario K2M 1W8 Canada, http://qnx.com.

[9] N. Costescu, D. M. Dawson, and M. Loffler, “QMotor 2.0 - A PC
Based Real-Time Multitasking Graphical Control Environment”,
June 1999 IEEE Control Systems Magazine, Vol. 19 Number 3,
pp. 68-76.

[10] M. Loffler, D. Dawson, E. Zergeroglu, N. Costescu, “Object-
Oriented Techniques in Robot Manipulator Control Software
Development”, Proc. of the American Control Conference,
Arlington, VA, June 2001, to appear.

[11] B. Stroustrup, “An Overview of the C++ Programming
Language”, Handbook of Object Technology, CRC Press. 1998,
ISBN 0-8493-3135-8.

[12] Josie Wernecke, “The Inventor Mentor”, Addison-Wesley, ISBN
0-201-62495-8.

[13] N. Costescu, M. Loffler, M. Feemster, and D. Dawson, “QMotor
3.0 – An Object Oriented System for PC Control Program
Implementation and Tuning”, Proc. of the American Control
Conference, Arlington, VA, June 2001, to appear.

