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Abstract – This paper describes the design and implementation 
of the Robotic Platform, an object-oriented development 
platform for robotic applications. The Robotic Platform 
includes servo control, trajectory generation, 3D simulation, a 
graphical user interface, and a math library. As opposed to 
distributed solutions, the Robotic Platform implements all these 
components on a single hardware platform (a standard PC), 
with a single programming language (C++), and on a single 
operating system (the QNX Real-Time Platform) while 
guaranteeing deterministic real-time performance. This design 
leads to an open architecture that is less complex, easier to use, 
and easier to extend. 

1. INTRODUCTION 
Robot control systems are very demanding with regard to 
software and hardware performance because their building 
blocks cover a wide range of disciplines found in robotics and 
software development (e.g., real-time programming, 3D 
graphics, trajectory generation, etc.). Hence, it is desirable to 
create a common platform that can be reused by researchers for 
different applications. Due to the lack of flexibility and 
performance of proprietary vendor-supplied robot control 
languages, previous research focused on building robot control 
libraries on top of a commonly used programming language 
(e.g., “C”) that was executed on a Unix workstation. RCCL [1] 
and ARCL [2] are examples of such libraries. Even though this 
approach leads to a higher flexibility and performance, many 
robot control platforms developed in the 80’s and early 90’s 
were inherently complex due to the limitations of software 
packages and hardware components of that time. That is, most 
operating systems did not support real-time programming 
(fostering projects like RCI [1] and Chimera [3]). In addition, 
procedural programming languages like “C” tend to reach their 
limits with regard to reusability for complex projects; 
furthermore, the limited performance of hardware components 
forced system developers to utilize distributed architectures that 
integrated a mix of proprietary hardware and software. 
Over the last ten years, many innovations have occurred in the 
computing area. Specifically, the advent of object-oriented 
software design [4] facilitated the management of more complex 
projects while also fostering code reuse and flexibility. For 
example, robot control libraries like RIPE [5], OSCAR [6], and 
ZERO++ [7] utilized object-oriented techniques in robot 
programming. We have also witnessed the proliferation of real-
time Unix-like operating systems for the PC [8], which facilitate 
the replacement of proprietary hardware components for real-
time control [9]. In the hardware sector, we have witnessed the 
advent of high-speed, low-cost PCs, fast 3D graphics video 
boards, and inexpensive motion control cards. Consequently, the 
PC platform now provides versatile functionality, and hence, 
makes complex software architectures and proprietary hardware 
components superfluous in most cases. The QMotor Robotic 
Toolkit (QMotor RTK) [10], for example, integrates real-time 

manipulator control and the graphical user interface (GUI) all on 
a single PC platform. 
Despite the extensive functionality of the PC platform, much of 
the research in robot control software utilizes distributed 
architectures [5-7]. Besides the obvious advantages of 
distributed systems (e.g., more computational power), there are 
several disadvantages. Specifically, a distributed architecture 
increases the complexity of the software significantly. 
Additionally, hard real-time behavior over network connections 
often requires expensive proprietary hardware. Generally, the 
overall hardware cost is higher and users have to familiarize 
themselves with different hardware architectures and operating 
systems. Even though many platforms developed in the last 
couple of years attempted to be extensible, these platforms are 
seldom used and reused. Apparently, engineers consider it easier 
to develop their applications from scratch. Indeed, from our own 
experience, the learning curve of installing, learning, and 
modifying previous robot control platforms is steep. 
Given the above remarks, the Robotic Platform is the first 
platform that has been designed to integrate servo control loops, 
trajectory generation, task level programs, GUI programs, and 
3D simulation in a homogeneous software architecture. That is, 
only one hardware platform (the PC), one operating system (the 
QNX Real-Time Platform [8]), and one programming language 
(C++ [11]) are used. This type of architecture has the following 
advantages: 
Simplicity. A homogeneous non-distributed architecture is much 
smaller and simpler than a distributed inhomogeneous 
architecture. It is easier to install, easier to understand, and easier 
to extend.  
Flexibility at all Levels. Every component of the Robotic 
Platform is open for extensions and modifications. Many past 
platforms have utilized an open architecture at some levels, but 
other levels (e.g., the servo control) had been implemented on 
proprietary hardware such that they could not be modified. 
Cost. The Robotic Platform requires fewer hardware components 
than a distributed platform. Basically, a single PC with one or 
more input/output (I/O) boards is sufficient. Additionally, PC 
hardware is very cost effective. 

2. POWERFUL TOOLS AND TECHNOLOGIES – THE 

BASIS FOR THE ROBOTIC PLATFORM 
To reduce development effort and complexity, the Robotic 
Platform is based on general-purpose tools and technologies. 
PC Technology. While in the past only expensive UNIX 
workstations provided the processing power necessary to control 
robotic systems, the PC has caught up or even exceeded the 
performance of workstations [9]. Compared to UNIX 
workstations, a PC based system allows for a greater variety of 
hardware and software components. Additionally, these 
components and the PC itself are usually cheaper than their 
UNIX counterparts. 



 

The QNX Real-Time Platform. The QNX Real-Time Platform 
(RTP) by QSSL [8] consists of the QNX6/Neutrino operating 
system and additional components for development and 
multimedia. QNX6 is an advanced real-time operating system 
that provides a modern microkernel-based architecture, a POSIX 
compliant programming interface, self-hosted development, 3D 
graphics capabilities and an easy device driver architecture. The 
RTP is also very cost-effective as it is free for non-commercial 
use and runs on low-cost standard PCs. 
Object-Oriented Programming in C++. With regard to 
developing robot control software, object-oriented programming 
has several benefits over procedural programming. First, it 
provides language constructs that allow for a much easier 
programming interface. For example, a matrix multiplication can 
be expressed by a simple “*”, similar to MATLAB 
programming. Second, object-oriented programming allows for a 
system architecture that is very flexible but yet simple. That is, 
the components (classes) of the system can have a built-in 
default behavior and default settings. The programmer can 
utilize this default behavior to reduce the code size or override it 
for specific applications. Finally, object-oriented programming 
supports generic programming, which facilitates the 
development of components that are independent from a specific 
implementation (e.g., a generic class “Manipulator” will 
work with different manipulator types). All of the above benefits 
are based on the general concepts of object-oriented 
programming: i) abstraction, ii) encapsulation, iii) 
polymorphism, and iv) inheritance [4, 10]. The language of 
choice is C++, as it provides the whole spectrum of object-
oriented concepts while maintaining high performance [11]. 
Open Inventor. Open Inventor [12], developed by Silicon 
Graphics, is an object-oriented C++ library for creating and 
animating 3D graphics. Open Inventor minimizes development 
effort, as it is able to load 3D models that are created in the 
Virtual Reality Modeling Language (VRML) format. A variety 
of software packages are available that facilitate the construction 
of 3D VRML models that represent robotic components. The 
Robotic Platform also utilizes the functionality of Open Inventor 
to animate these components. 
The QMotor System. Implementation of control strategies 
requires the capability to establish a deterministic real-time 
control loop, to log data, to tune control parameters, and to plot 
signals. For this purpose, the graphical control environment 
QMotor [13] is used for the Robotic Platform.  

3. OVERVIEW OF THE DESIGN 
Each component of the Robotic Platform (e.g., manipulators, the 
trajectory generator, etc.) is modeled by a C++ class. A C++ 
class definition combines the data and the functions related to 
that component. For example, the class “Puma560” contains the 
data of a Puma 560 robot (e.g., the current joint position) as well 
as functions related to the Puma (e.g., enabling of the arm 
power) [10]. Hence, the design of the Robotic Platform results 
from grouping data and functions in a number of classes in a 
meaningful and intuitive way. A class can use parts of the 
functionality and the data of another class (called the base class) 
by deriving this class from the base class. This process is called 
inheritance, and it attributes heavily to code reuse and eliminates 
redundancy in the system. To extend the system, the programmer 
creates new classes. Usually, new classes will be derived from 
one of the already existing classes to minimize coding effort. 

The classes of the Robotic Platform include GUI components 
and 3D modeling for graphical simulation. These types of 
components were traditionally found in separate programs (e.g., 
see the RCCL robot simulator [1]). However, by including them 
in the same class, we can achieve a tight integration of the GUI, 
3D modeling, and other functional parts. Additionally, system 
extensions automatically include GUI components and 3D 
modeling. 
The main class hierarchy diagram of the Robotic Platform is 
shown in Figure 1. Each arrow is drawn from the derived class to 
the parent class; hence, the further to the left a class is listed, the 
more generic it is. The classes of the Robotic Platform can be 
separated into the following categories: 

The Core Classes. The classes RoboticObject, 
FunctionalObject, and PhysicalObject build the 
basis of all robotic objects. The classes RoboticPlatform 
and ObjectManager contain functionality for overall 
management of robot control programs. 
Generic Robotic Classes. Derived from the core classes are a 
number of generic robotic classes. These classes cannot be 
instantiated. Rather, these classes serve as base classes that 
implement common functionality while also presenting a generic 
interface to the programmer (i.e., these classes can be used to 
create programs that are independent from the specific hardware 
or the specific algorithm). 
Specific Robotic Classes. Derived from the generic robotic 
classes are classes that implement a specific piece of hardware 
(e.g., the class Puma560 implements the Puma 560 robot) or a 
specific functional component (e.g., the class 
DefaultPositionControl implements a proportional 
integral derivative (PID) position control). 
The ControlProgram Class. This class is part of the QMotor 
system. It is the basis for all real-time control loops. Classes that 
require a real-time control loop are derived from the 
ControlProgram class. 
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Figure 1. Class Hierarchy of the Robotic Platform 

In addition to the classes shown in Figure 1, the Robotic 
Platform provides the classes of the math library, the 
manipulator model classes, and several utility classes. These 
classes and their class hierarchy will be described later in this 
paper. 



 

In a robot control program, the programmer instantiates objects 
from classes. The programmer can instantiate as many objects as 
desired from the same class. For example, it is straightforward to 
operate two Puma robots by simply creating two objects of the 
class Puma560. As soon as objects are created, the programmer 
can employ their functionality. The Object Manager (see Figure 
2) maintains a list of all currently instantiated objects. With the 
object manager, it is possible to initiate functionality on multiple 
objects (e.g., to shutdown all objects). The Scene Viewer is the 
default GUI of the Robotic Platform. It contains windows to 
view the 3D scene of the robotic work cell and a list of all 
objects. The QMotor GUI can be optionally utilized for data 
logging, plotting and control parameter tuning. 
In a robotic system, different components are related to each 
other. To reflect this fact, object relationships are established 
between objects. For example, objects can specify their physical 
connection to each other. Object relationships are implemented 
by C++ pointers to the related object. The object relationships 
are indicated by arrows in Figure 2.  
The Robotic Platform utilizes a global configuration file to 
specify the system’s configuration. For each object, the 
configuration file lists the object name in brackets, the class 
name of the object, and the object settings (see Figure 3). 
 

 

Figure 2. Run-Time Architecture of the Robotic Platform 

[leader] 
class Puma560 
position 0 0 0 
 
[follower] 
class BarrettArm 
simulationMode on 
 
[gripper] 
class BarrettHand 
port /dev/ser1 

Figure 3. An Example Global Configuration File 

4. THE CORE CLASSES 
The class RoboticObject is the base class for all robotic 
classes. It defines a generic interface (i.e., a set of functions that 
can be used with all robotic classes of the Robotic Platform). For 
example, a program can use the createControlPanel() 
function to tell an object of either the class Puma560 or the 
class Gripper to display the appropriate control panel. 
Specifically, the class RoboticObject defines i) error 
handling, ii) object name handling, iii) configuration 
management, iv) object shutdown, v) the control panel, and vi) 
thread management. Note that the actual functionality is usually 

implemented in the derived class. However, the class 
RoboticObject also implements simple default functionality.  

The class PhysicalObject is derived from the class 
RoboticObject. It is the base class for all classes that 
represent physical objects (e.g., manipulators, sensors, grippers, 
etc.). Specifically, the class PhysicalObject defines the 
following generic functionality: 
- 3D Visualization. Every physical object can provide its Open 

Inventor 3D model. The Scene Viewer loops through all 
physical objects to create the entire 3D scene. 

- Object Connections. A physical object can specify another 
object as a mounting location. By using this object 
relationship, the Scene Viewer is able to draw objects at the 
right location (e.g., the gripper being mounted on the end-
effector of the manipulator).  

- Position and Orientation. The programmer can set the 
absolute location of the object in the work cell (or the 
mounting location, if an object connection is specified). 

- Simulation Mode. Every physical object can be locked into 
simulation mode. That is, the object does not perform any 
hardware I/O; instead, its behavior is simulated. 

The class FunctionalObject currently does not contain any 
functionality. It is only added as a symmetric counterpart to the 
class PhysicalObject. Functional robotic classes like the 
class TrajectoryGenerator are derived from the class 
FunctionalObject. 

5. CLASSES RELATED TO MANIPULATORS 
The central components of any robotic work cell are 
manipulators. The class Manipulator is a generic class that 
defines common functionality of manipulators with any number 
of joints. Derived from the class Manipulator is the class 
DefaultManipulator, which contains the default 
implementation for open-architecture manipulators. Open-
architecture manipulators provide access to the current joint 
position and the control torque/force of the manipulator and 
hence, allow for custom servo control algorithms. Derived from 
the class DefaultManipulator are the classes that 
implement specific manipulator types. Currently, two 
manipulators are supported: the Puma 560 robot and the Barrett 
Whole Arm Manipulator (WAM) in both the 4-link and 7-link 
configuration. More information about the specific control 
implementation of these robot manipulators can be found in [10]. 

The class DefaultManipulator reads the current joint 
position and outputs the control signal continuously in a QMotor 
control loop. The actual calculation of the servo control 
algorithm is contained in a separate servo control object. The 
class of this object is derived from the class ServoControl, 
which defines the interface of a servo control. The default servo 
control is defined in the class DefaultPositionControl, 
which implements a PID position control with friction 
compensation. Manipulator classes like Puma560 or WAM 
automatically instantiate an object of the class 
DefaultPositionControl for the convenience of the 
programmer. However, the programmer can switch to a different 
servo control anytime. 
For the simulation of the manipulators, their dynamic model is 
required. Additionally, for Cartesian motion, forward/inverse 
kinematics and the calculation of the Jacobian matrix are needed. 
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All these functions are located in the ManipulatorModel 
classes. The class hierarchy of the ManipulatorModel 
classes is displayed in Figure 4.  
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Figure 4. The ManipulatorModel Classes 

The trajectory generation is also performed in separate classes. 
The class TrajectoryGenerator defines the interface of a 
generic trajectory generator. A trajectory generator is any object 
that creates a continuous stream of setpoints and provides this 
stream to a manipulator. The manipulator calls the 
getCurrentSetpoint() function of the trajectory 
generator to determine the current desired position. It is also 
possible to switch between multiple trajectory generators. The 
class QueueTrajectoryGenerator, which is derived from 
the class TrajectoryGenerator, is a generic interface of a 
trajectory generator that creates the trajectory along via and 
target points. The class DefaultTrajectoryGenerator, 
which is derived from QueueTrajectoryGenerator, is the 
specific implementation of a trajectory generator that 
interpolates both in joint space and Cartesian space, including 
path blending between two motion segments at the via points.  

6. THE END-EFFECTOR CLASSES 
Several robotic classes refer to end-effectors, as given below: 

Gripper Classes. The class Gripper is the generic interface 
class of a gripper. It defines the functions open(), close(), 
and relax(). The class DefaultGripper utilizes two 
digital output lines to control the gripper, one digital line to open 
the gripper, and one to close it. The class BarrettHand is 
used to operate the BarrettHand.  
Force/Torque Sensor Classes. The generic base class 
ForceTorqueSensor defines the interface of a force/torque 
sensor. That is, it defines functions to read forces and torques. 
The class AtiFTSensor is the implementation of the ATI 
Gamma 30/100 Force/Torque sensor. 

Toolchanger Classes. The class ToolChanger is the generic 
interface class of a toolchanger. It defines the functions 
lock(), unlock(), and relax(). The class 
DefaultToolChanger uses two digital output lines to 
control the lock and unlock function of the toolchanger. 

7. THE OBJECT MANAGER 
The class ObjectManager implements the object manager. 
Every time a new object is instantiated in the user’s robot control 
program, the object registers itself with the object manager. 
Similarly, every time an object is destroyed, it is removed from 
the object list that is maintained by the object manager. The 
object manager contains functionality to loop through this list to 
perform operations on multiple objects. For example, the Scene 
Viewer retrieves a list of all objects that are derived from the 
class PhysicalObject to render each of them, and thereby, 
is able to render the entire 3D scene. 
The functionality of the object manager is also necessary to 
allow for generic code. Generic code operates any object (e.g., a 

manipulator object of class Puma) through the appropriate 
interface class (e.g., the class Manipulator) by using C++ 
virtual functions. Hence, generic code does not need to be 
changed when an object of a different class is used (e.g., the 
class WAM), as long as this object is derived from the same 
interface class. Generic code is very useful for code-reuse (e.g., 
only a single generic trajectory generator must be written which 
can be used with different manipulator types). The following 
excerpt of generic code is manipulator independent code that 
works with either the Puma robot, the WAM, or any robot that is 
added in the future. 
 
 Manipulator *robot; 
 ObjectManager om; 
 
 robot = om.createDerivedObject<Manipulator>(“leader”); 
 
 cout << “Current End-Effector Coordinate Frame: “ 
      << robot->getEndEffectorTransform();  

 
The above code first calls the function 
createDerivedObject() to create an object of either the 
classes Puma560, BarrettArm, or WAM. Then, it operates this 
object via a pointer to the generic base class (i.e., 
Manipulator *). In order to create the desired object, the 
createDerivedObject() function looks for the object 
name in the global configuration file (see Figure 3). Then, it 
reads the class name of the object from the configuration file and 
creates an object of this class. To do so, the framework of the 
Robotic Platform maintains a list of all classes in the program. 
Hence, to switch to a different manipulator type, only the class 
name in the global configuration file has to be changed when 
using a generic program. 

8. THE CONCURRENCY MODEL 
While it is often sufficient for many software systems to run as a 
single task, robotic systems require components like the servo 
control to be executed concurrently with other components (e.g., 
the trajectory generator). The Robotic Platform runs all 
concurrent tasks on the same PC, within a single robot control 
program. This program spawns threads if concurrent execution is 
required. Once the program terminates, all threads are 
automatically terminated. Figure 5 shows an example of how a 
user program spawns multiple threads. 
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Figure 5. Creating New Threads for Concurrency 

At program start, only thread 1 is executing. At the initialization 
of the Robotic Platform library, a new thread is created that 



 

executes the 3D Scene Viewer. Then, the user’s robot control 
program utilizes a new object of a manipulator class. The 
creation of this manipulator object automatically spawns a third 
thread for the servo control loop. Hence, the first thread can go 
ahead and specify target points for the manipulator, while the 
servo control loop and the Scene Viewer run in the background. 
To ensure real-time behavior of time critical tasks, the threads 
run at different priorities (e.g., the servo control loop runs at the 
high priority 27). To allow for synchronized communication 
between the threads, message passing (as provided by the classes 
Client and Server) and standard thread synchronization 
mechanisms are used (as implemented in the classes Barrier 
and ReaderWriterLock). 

9. CONTROL IMPLEMENTATION WITH QMOTOR 
QMotor [13] is a complete environment for implementing and 
tuning control strategies. To implement a real-time control loop, 
the programmer derives a class from the class 
ControlProgram and reimplements several functions that 
perform the control calculation and the housekeeping. Once a 
control program is implemented and compiled, the user can start 
up the QMotor GUI, load the control program, start it, and tune 
the control strategy from the control parameter window. 
Furthermore, the user can open multiple real-time plot windows 
(see Figure 6) and set logging modes. To utilize QMotor for the 
Robotic Platform, classes that require a real-time control loop 
(e.g., DefaultManipulator) are derived from QMotor’s 
ControlProgram class.  
 

 

Figure 6. The QMotor Plot Window 

10. THE MATH LIBRARY 
Previous robot control libraries often introduced their own 
specific robotic data types. Most of these data types are based on 
vectors or matrices (e.g., a homogeneous transformation is a 4x4 
matrix). Hence, it is more feasible and flexible to use a general 
C++ matrix library and define robotic types on top of it. Most of 
the matrix libraries available for C++ use dynamic memory 
allocation, which risks the loss of deterministic real-time 
response [10]. To overcome this disadvantage, special real-time 
matrix classes  (see Figure 7) were developed for the Robotic 
Platform that use templates for the matrix size. Consequently, 
the matrix size is known at compile time and dynamic memory 
allocation is not required. The classes MatrixBase, 
VectorBase, Matrix, ColumnVector, RowVector, and 
Vector are also parameterized with the data type of the 
elements. The default element data type is double, which is the 
standard floating-point data type of the Robotic Platform. The 

classes MatrixBase and VectorBase are pure virtual base 
classes that allow for manipulation of matrices and vectors of an 
unknown size. Matrices and vectors of an unknown size are 
required during generic manipulator programming. The class 
Transform implements a homogenous 4x4 matrix, which is 
typically used to represent coordinate frames in robotic 
applications. The class MathException is used for error-
recovery. The example program shown in Figure 8 performs a 
common task in robotics: Calculating a position equation. This 
example shows that programming with the math library is very 
intuitive. 
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Figure 7. Class Hierarchy of the Math Library 

Transform Z = translation(0, 0, 0.7);
Transform E = translation(0, 0, 0.1);
Transform W = translation(1, 0.2, 0.3)
              * xRotation(M_PI);
Transform P = translation(-0.5, 0, 0);

// Solve Z*T6*E == W*P
Transform T6;
T6 = inverse(Z) * W * P * inverse(E);

 

Figure 8. Example Program for the Matrix Classes 

The math library also provides the classes LowpassFilter 
and HighpassFilter for numeric filtering, and the classes 
Differentiator and Integrator for numeric 
differentiation and integration. These classes are parameterized 
with the data type (i.e., they work with scalars, vectors, and 
matrices). 

11. THE GRAPHICAL USER INTERFACE 
Whenever a program of the Robotic Platform is executed, the 
Scene Viewer window opens up, displaying the 3D scene that 
contains all objects created in the robot control program (see 
Figure 9). To assemble the 3D scene, the Scene Viewer loops 
through all physical objects and obtains their Open Inventor 3D 
data. Then, the Scene Viewer uses the object connection 
relationships to display the 3D objects at the right position. 
Furthermore, the Scene Viewer continuously updates the 3D 
scene with the current state of all objects (e.g., it uses the current 
joint position of a manipulator to display the joints in the correct 
position). Hence, the 3D scene always represents the current 
state of the hardware (in simulation mode, the simulated state of 
the hardware is represented). To select the best viewing position, 
the user can navigate in the 3D scene using the mouse. The user 
can also open the Object List window, which displays a list of all 
objects that are currently instantiated by the robot control 
program, including class name, object name, and object status. 
Each object has an individual pop-up menu. This pop-menu 
appears if the user right clicks on the object in the Scene Viewer 
rendering area or the Object List window. The pop-up menu has 
options to select 3D display modes and to open the object’s 
control panel. Additionally, there are menu items that are 



 

specific to the class of the object. For example, a gripper object 
has additional menu items to open, close, and relax the gripper. 
The Robotic Platform provides several GUI utility programs for 
calibration and testing. Among others, the Teachpendant allows 
the user to move the manipulator to desired target position in 
zero gravity mode, and store these positions in a list. The 
Teachpendant also utilizes the trajectory generator to move the 
manipulator back to stored positions.  
 

    

Figure 9. The Scene Viewer and the Object List Window 

12. WRITING, COMPILING, LINKING, AND STARTING 

ROBOT CONTROL PROGRAMS 
A robot control program is first compiled and then linked to the 
Robotic Platform library. Once the program is compiled and 
linked, the user can start it from the command line. Figure 10 
shows the listing of an example robot control program for a 
simple pick and place operation. 
Every robot control program first calls 
RoboticPlatform::init(). This function initializes the 
platform and starts up the Scene Viewer. Then, the user’s 
program creates all objects that are required for the robotic task 
(i.e., a gripper object, a Puma 560 object, and a trajectory 
generator object are created). The last part of the example 
program utilizes the trajectory generator object and the gripper 
object to move the robot to the work piece, close the gripper, 
pick up the work piece, and drop it at the target position. 
 

#include “RoboticPlatform.hpp” 
 

void main(int argc, char *argv[]) 
{ 
  RoboticPlatform::init(argc, argv); 
 
  Puma560 puma;      
  DefaultGripper gripper; 
 
  DefaultTrajectoryGenerator<6> tragen; 
  puma.setTrajectoryGenerator(tragen); 
  Transform down = xRotation(M_PI);  // End-effector 
                                     // pointing down 
  gripper.open(); 
  tragen.moveTo(translation(0, 0.5, 0) * down); 
  tragen.stop(1); 
  gripper.close(); 
  tragen.moveTo(translation(0.5, 0.5, 1) * down); 
  tragen.moveTo(translation(1, 1, 0) * down); 
  tragen.stop(1); 
  gripper.open(); 
} 

Figure 10. A Simple Pick and Place Example Program  

13. CONCLUSIONS 
As opposed to past distributed robot control platforms, the 
Robotic Platform presents a homogeneous, non-distributed 
object-oriented architecture. That is, based on PC technology 
and the QNX RTP, all non real-time and real-time components 
are integrated in a single C++ library. The architecture of the 
Robotic Platform provides efficient integration and extensibility 
of devices, control strategies, trajectory generation, and GUI 
components. The Robotic Platform is built on the QMotor 
control environment for data logging, control parameter tuning, 
and real-time plotting. A new, real-time math library simplifies 
operations and allow for an easy-to-use programming interface. 
Built-in GUI components like the Scene Viewer and the control 
panels provide for a comfortable operation of the Robotic 
Platform and a quick ramp-up-time even for users that are 
inexperienced in C++ programming.  
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