Design and Implementation of the Robotic Platform

Markus S. Loffler, Vilas K. Chitrakaran, and Darren M. Dawson

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC29631-0915, USA
E-mail: [loffler, cvilas, ddawson] @ces.clemson.edu

Abstract — This paper describes the design and implementation manipulator control and the graphical user interface (GUI) all on
of the Robotic Platform, an object-oriented development a single PC platform.

platform  for robotic applications. The ~Robotic Platform Despite the extensive functionality of the PC platform, much of
includes servo control, trajectory generation, 3D simulation, & 0 “research in robot control software utilizes distributed
graphical user interface, and a math library. As opposed to architectures [5-7]. Besides the obvious advantages of
distributed solutions, the Robotic Platform implements all these distributed systemse@., more computational power), there are
components on a single hardware platform (a standard PC), . o o o r ’ )

. . . : several disadvantages. Specifically, a distributed architecture
with & single programming language (C++), and on a single increases the cogr’nplexitg/ of tr{e software significantly

operating system (the QNX Real-Time Platform) while - ) . .
guaranteeing deterministic real-time performance. This design Additionally, hard real-time behavior over network connections

leads to an open architecture that is less complex, easier to use, often requires expensive proprietary hardware. Generally, the

and easier to extend. overall hardware cost is higher and users have to familiarize
themselves with different hardware architectures and operating
1. INTRODUCTION systems. Even though many platforms_ developed in the last
i . couple of years attempted to be extensible, these platforms are
Robot control systems are very demanding with regard to seldom used and reused. Apparently, engineers consider it easier
software and hardware performance because their building g develop their applications from scratch. Indeed, from our own
blocks cover a wide range of disciplines found in robotics and experience, the learning curve of installing, learning, and
software development (eg., real-time programming, 3D modifying previous robot control platforms is steep.

graphics, trajectory generation, etc.). Hence, it is desirable to
create a common platform that can be reused by researchers for
different applications. Due to the lack of flexibility and
performance of proprietary vendor-supplied robot control
languages, previous research focused on building robot control
libraries on top of a commonly used programming language
(e.g., “C") that was executed on a Unix workstation. RCCL [1]
and ARCL [2] are examples of such libraries. Even though this
approach leads to a higher flexibility and performance, many
robot control platforms developed in the 80’'s and early 90’s
were inherently complex due to the limitations of software

Given the above remarks, the Robotic Platform is the first
platform that has been designed to integrate servo control loops,
trajectory generation, task level programs, GUI programs, and
3D simulation in a homogeneous software architecture. That is,
only one hardware platform (the PC), one operating system (the
QNX Real-Time Platform [8]), and one programming language
(C++ [11]) are used. This type of architecture has the following
advantages:

Simplicity. A homogeneous non-distributed architecture is much
smaller and simpler than a distributed inhomogeneous

packages and hardware components of that time. That is, mo&rchitecture. It is easier to install, easier to understand, and easier
operating systems did not support real-time programming'© €xtend.

(fostering projects like RCI [1] and Chimera [3]). In addition, Flexibility at all Levels. Every component of the Robotic
procedural programming languages like “C” tend to reach theirPlatform is open for extensions and modifications. Many past
limits with regard to reusability for complex projects; Platforms have utilized an open architecture at some levels, but
furthermore, the limited performance of hardware componentsother levels 9., the servo control) had been implemented on
forced system developers to utilize distributed architectures thaproprietary hardware such that they could not be modified.
integrated a mix of proprietary hardware and software. Cost. The Robotic Platform requires fewer hardware components

Over the last ten years, many innovations have occurred in théhan a distributed platform. Basically, a single PC with one or
computing area. Specifically, the advent of object-orientedmore input/output (/O) boards is sufficient. Additionally, PC
software design [4] facilitated the management of more complexhardware is very cost effective.

projects while also fostering code reuse and flexibility. For

example, robot control libraries like RIPE [5], OSCAR [6], and 2. POWERFULTOOLSAND TECHNOLOGIES— THE
ZERO++ [7] utilized object-oriented techniques in robot BASIS FOR THE ROBOTIC PLATFORM
programming. We have also witnessed the proliferation of real- ) .
time Unix-like operating systems for the PC [8], which facilitate 10 reduce development effort and complexity, the Robotic
the replacement of proprietary hardware components for realP1aformisbased on general-purpose tools and technologies.
time control [9]. In the hardware sector, we have witnessed thé’C Technology. While in the past only expensive UNIX
advent of high-speed, low-cost PCs, fast 3D graphics videgVorkstations provided the processing power necessary to control
boards, and inexpensive motion control cards. Consequently, theobotic systems, the PC has caught up or even exceeded the
PC platform now provides versatile functionality, and hence, performance of workstations [9]. Compared to UNIX
makes complex software architectures and proprietary hardwar@orkstations, a PC based system allows for a greater variety of
components superfluous in most cases. The QMotor Robotidiardware and software components. Additionally, these

Toolkit (QMotor RTK) [10], for example, integrates real-time components and the PC itself are usually cheaper than their
UNIX counterparts.



The QNX Real-Time Platform. The QNX Real-Time Platform
(RTP) by QSSL [8] consists of the QNX6/Neutrino operating
system and additional components for development and
multimedia. QNX6 is an advanced real-time operating system
that provides a modern microkernel-based architecture, a POSIX
compliant programming interface, self-hosted development, 3D
graphics capabilities and an easy device driver architecture. The
RTP is also very cost-effective as it is free for non-commercial
use and runs on low-cost standard PCs.

Object-Oriented Programming in C++. With regard to
developing robot control software, object-oriented programming
has several benefits over procedura programming. First, it
provides language constructs that allow for a much easier
programming interface. For example, a matrix multiplication can

The classes of the Robotic Platform include GUI components
and 3D modeling for graphical simulation. These types of
components were traditionally found in separate progrags (
see the RCCL robot simulator [1]). However, by including them
in the same class, we can achieve a tight integration of the GUI,
3D modeling, and other functional parts. Additionally, system
extensions automatically include GUI components and 3D
modeling.

The main class hierarchy diagram of the Robotic Platform is
shown in Figure 1. Each arrow is drawn from the derived class to
the parent class; hence, the further to the left a class is listed, the
more generic it is. The classes of the Robotic Platform can be
separated into the following categories:

The Core Classes. The classes RoboticObject,

be expressed by a simple*”’ similar to MATLAB  pynctional Gbject, and Physical Gbject build the
programming. Second, object-oriented programming allows for &yasis of all robotic objects. The classsbot i cPl at f orm

system architecture that is very flexible but yet simple. That is, g Obj ect Manager contain functionality for overall

the components (classes) of the system can have a bu”t'i?nanagement of robot control programs.

default behavior and default settings. The programmer can - . .

utilize this default behavior to reduce the code size or override itGenerlc Robotic C!asses. D_erlved from the core classes are a
for specific applications. Finally, object-oriented programming .numbe.r of ‘generic robotic classes. These classes cannot be
supports generic programming, which facilitates  the instantiated. Rather, these classes serve as base classes that

development of components that are independent from a specifiEnplemem common functionality while also presenting a generic
implementation €.9., a generic classMani pul at or” will

interface to the programmer.€, these classes can be used to
work with different manipulator types). All of the above benefits create programs that are independent from the specific hardware
are based on the general concepts of object-oriente
D)

ol the specific algorithm).
programming: abstraction, i) encapsulation, iii) Specific Robotic Classes. Derived from the generic robotic
polymorphism, and iv) inheritance [4, 10]. The language of classes are classes that implement a specific piece of hardware
choice is C++, as it provides the whole spectrum of object-(€9. the classPumas60 implements the Puma 560 robot) or a
oriented concepts while maintaining high performance [11]. specific ~ functional ~ component eg., the class

Open Inventor. Open Inventor [12], developed by Silicon Defaul tPositionControl implements a proportional
Graphics, is an object-oriented C++ library for creating and ntegral derivative (PID) position control).

animating 3D graphics. Open Inventor minimizes developmentThe ControlProgram Class. This class is part of the QMotor
effort, as it is able to load 3D models that are created in thesystem. It is the basis for all real-time control loops. Classes that
Virtual Reality Modeling Language (VRML) format. A variety require a real-time control loop are derived from the
of software packages are available that facilitate the constructiofont r ol Pr ogr amclass.

of 3D VRML models that represent robotic components. The
Robotic Platform also utilizes the functionality of Open Inventor
to animate these components.

Core Classes Generic Robotic Classes  Specific Robotic Classes

<] . Q_ueue .
The QMotor System. Implementation of control strategies Gomeraor[+] Trlectoy 4 DefaulTrjectonGenerator
requires the capability to establish a deterministic real-time
control loop, to log data, to tune control parameters, and to plot ServoControl ¢————— DefaultPositionControl_|

signals. For this purpose, the graphical control environment

QMotor [13] is used for the Robotic Platform.

<+ . Default
Manipulator

[Roboticobject]+|
3. OVERVIEW OF THEDESIGN
Each component of the Robotic Platforag(, manipulators, the
trajectory generatoretc.) is modeled by a C++ class. A C++
class definition combines the data and the functions related tc [_Onofool_|
that component. For example, the claBsrfe560” contains the [ ForceTorqueSensor J«——| AtFTSensor |
data of a Puma 560 robad., the current joint position) as well
as functions related to the Pumeag(, enabling of the arm Gripper
power) [10]. Hence, the design of the Robotic Platform results DefaultCripper
from grouping data and functions in a number of classes in & [ conoProgam ja---

4 ToolChanger }4—{ DefaultToolChanger ‘

meaningful and intuitive way. A class can use parts of the
functionality and the data of another class (calledotize class)

by deriving this class from the base class. This process is called
inheritance, and it attributes heavily to code reuse and eliminaten addition to the classes shown in Figure 1, the Robotic
redundancy in the system. To extend the system, the programméHatform provides the classes of the math library, the
creates new classes. Usually, new classes will be derived frormanipulator model classes, and several utility classes. These
one of the already existing classes to minimize coding effort.classes and their class hierarchy will be described later in this

paper.

Figure 1. Class Hierarchy of the Robotic Platform



In a robot control program, the programmer instantiates objects
from classes. The programmer can instantiate as many objects as
desired from the same class. For example, it is straightforward to
operate two Puma robots by simply creating two objects of the
class Puma560. As soon as objects are created, the programmer
can employ their functionaity. The Object Manager (see Figure
2) maintains a list of al currently instantiated objects. With the
object manager, it is possible to initiate functionality on multiple
objects (e.g., to shutdown all objects). The Scene Viewer is the
default GUI of the Robotic Platform. It contains windows to
view the 3D scene of the robotic work cell and a list of all
objects. The QMotor GUI can be optionally utilized for data
logging, plotting and control parameter tuning.

In a robotic system, different components are related to each
other. To reflect this fact, object relationships are established
between objects. For example, objects can specify their physical
connection to each other. Object relationships are implemented
by C++ pointers to the related object. The object relationships
areindicated by arrowsin Figure 2.

The Robotic Platform utilizes a globa configuration file to

implemented in the derived class. However, the class
Robot i cOhj ect also implements simple default functionality.

The class Physi cal Obj ect is derived from the class

Roboti cObj ect. It is the base class for all classes that

represent physical objects.d., manipulators, sensors, grippers,

etc.). Specifically, the clas$hysi cal Obj ect defines the

following generic functionality:

- 3D Visualization. Every physical object can provide its Open
Inventor 3D model. The Scene Viewer loops through all
physical objects to create the entire 3D scene.

- Object Connections. A physical object can specify another
object as a mounting location. By using this object
relationship, the Scene Viewer is able to draw objects at the
right location é.g., the gripper being mounted on the end-
effector of the manipulator).

- Position and Orientation. The programmer can set the
absolute location of the object in the work cell (or the
mounting location, if an object connection is specified).

- Smulation Mode. Every physical object can be locked into

specify the system’s configuration. For each object, the Simulation mode. That is, the object does not perform any
configuration file lists the object name in brackets, the class hardware l/O; instead, its behavior is simulated.

name of the object, and the object settings (see Figure 3).

Object Objects —
Relationships 3
N Logging
| i Tuning
i Trajectory RSZRG
User i | Generator
Robot T E T !
Control | Creates 2
Program
! 3D
Viewing

Trajectory
Generator
i
Ol
Vo
[

I Object Manager

‘ Scene Viewer

Figure 2. Run-Time Ar chitecture of the Robotic Platform

[l eader]
cl ass Puna560
position 0 0 O

[follower]
class BarrettArm
si mul ati onMbde on

[gripper]
cl ass BarrettHand
port /dev/serl

Figure 3. An Example Global Configuration File

4. THE CORECLASSES

The classRobot i cObj ect is the base class for all robotic
classes. It defines a generic interfaice,(a set of functions that

The clasg-unct i onal Obj ect currently does not contain any
functionality. It is only added as a symmetric counterpart to the
classPhysi cal Obj ect. Functional robotic classes like the
class Tr aj ect or yGener at or are derived from the class
Functi onal Qoj ect .

5. CLASSESRELATED TO MANIPULATORS

The central components of any robotic work cell are
manipulators. The cladgani pul at or is a generic class that
defines common functionality of manipulators with any number
of joints. Derived from the claskbni pul at or is the class
Def aul t Mani pul at or, which contains the default
implementation for open-architecture manipulators. Open-
architecture manipulators provide access to the current joint
position and the control torque/force of the manipulator and
hence, allow for custom servo control algorithms. Derived from
the class Def aul t Mani pul ator are the classes that
implement specific manipulator types. Currently, two
manipulators are supported: the Puma 560 robot and the Barrett
Whole Arm Manipulator (WAM) in both the 4-link and 7-link
configuration. More information about the specific control
implementation of these robot manipulators can be found in [10].
The classDef aul t Mani pul at or reads the current joint
position and outputs the control signal continuously in a QMotor
control loop. The actual calculation of the servo control
algorithm is contained in a separate servo control object. The
class of this object is derived from the cl& s voContr ol ,
which defines the interface of a servo control. The default servo
control is defined in the clad3ef aul t Posi ti onControl,
which implements a PID position control with friction

can be used with all robotic classes of the Robotic Platform). Focompensation. Manipulator classes likima560 or WAM

example, a program can use theeat eContr ol Panel ()

function to tell an object of either the claBana560 or the

automatically instantiate an  object of the class
Def aul t Posi ti onControl for the convenience of the

class Gri pper to display the appropriate control panel. programmer. However, the programmer can switch to a different

Specifically, the classRoboti cObj ect
handling, i) object name handling, iii)

defines i) error
configuration For the simulation of the manipulators, their dynamic model is

servo control anytime.

management, iv) object shutdown, v) the control panel, and viyequired. Additionally, for Cartesian motion, forward/inverse
thread management. Note that the actual functionality is usuallkinematics and the calculation of the Jacobian matrix are needed.



All these functions are located in the Mani pul at or Model
classes. The class hierarchy of the Mani pul at or Model
classesis displayed in Figure 4.

ManipulatorModel
A

|
‘PumaModeI ‘ ‘BarrettArmModeI‘ ‘ WAMModel ‘

Figure 4. The Manipulator M odel Classes

The tragjectory generation is also performed in separate classes.
The class Tr aj ect or yGener at or defines the interface of a
generic trajectory generator. A trgjectory generator is any object
that creates a continuous stream of setpoints and provides this
stream to a manipulator. The manipulator cals the
getCurrent Setpoi nt () function of the trgectory
generator to determine the current desired position. It is aso
possible to switch between multiple trgjectory generators. The
class QueueTr aj ect or yGener at or, which is derived from
the class Tr aj ect or yGener at or, is a generic interface of a
trajectory generator that creates the trgectory along via and
target points. The class Def aul t Tr aj ect or yGener at or,
which is derived from QueueTr aj ect or yGener at or, isthe
specific implementation of a traectory generator that
interpolates both in joint space and Cartesian space, including
path blending between two motion segments at the via points.

6. THE END-EFFECTOR CLASSES

Several robotic classes refer to end-effectors, as given below:

Gripper Classes. The class Gri pper is the generic interface
class of a gripper. It defines the functions open(), cl ose(),
and rel ax(). The class Def aul t G i pper utilizes two
digital output lines to control the gripper, one digital line to open
the gripper, and one to close it. The class Barrett Hand is
used to operate the BarrettHand.

Force/Torque Sensor Classes. The generic base class
For ceTor queSensor defines the interface of a force/torque
sensor. That is, it defines functions to read forces and torques.
The class Ati FTSensor is the implementation of the ATI
Gamma 30/100 Force/Torgque sensor.

Toolchanger Classes. The class Tool Changer is the generic
interface class of a toolchanger. It defines the functions
lock(), wunlock(), ad relax(). The class
Def aul t Tool Changer uses two digital output lines to
control the lock and unlock function of the toolchanger.

7. THE OBJECT MANAGER
The class Obj ect Manager implements the object manager.

manipulator object of clas®unma) through the appropriate
interface classeg., the classvani pul at or) by using C++
virtual functions. Hence, generic code does not need to be
changed when an object of a different class is used (e.g., the
classWAM), as long as this object is derived from the same
interface class. Generic code is very useful for code-reuge (
only a single generic trajectory generator must be written which
can be used with different manipulator types). The following
excerpt of generic code is manipulator independent code that
works with either the Puma robot, the WAM, or any robot that is
added in the future.

Mani pul at or *robot;
Obj ect Manager om

robot = om.createDerivedObject<Manipulator>(“leader”);

cout << “Current End-Effector Coordinate Frame: “
<< robot->getEndEffectorTransform();

The above code first cals the function
createDerivedObj ect () to create an object of either the
classes Puma560, Bar r et t Ar m or WAM Then, it operates this
object via a pointer to the generic base class (i.e,
Mani pul at or *). In order to create the desired object, the
createDerivedObj ect() function looks for the object
name in the global configuration file (see Figure 3). Then, it
reads the class name of the object from the configuration file and
creates an object of this class. To do so, the framework of the
Robotic Platform maintains a list of al classes in the program.
Hence, to switch to a different manipulator type, only the class
name in the globa configuration file has to be changed when
using a generic program.

8. THE CONCURRENCY MODEL

While it is often sufficient for many software systemsto run asa
single task, robotic systems require components like the servo
control to be executed concurrently with other components (e.g.,
the trajectory generator). The Robotic Platform runs all
concurrent tasks on the same PC, within a single robot control
program. This program spawns threads if concurrent execution is
required. Once the program terminates, al threads are
automatically terminated. Figure 5 shows an example of how a
user program spawns multiple threads.

Every time a new object is instantiated in the user’s robot control
program, the object registers itself with the object manager.
Similarly, every time an object is destroyed, it is removed from
the object list that is maintained by the object manager. The
object manager contains functionality to loop through this list to
perform operations on multiple objects. For example, the Scene
Viewer retrieves a list of all objects that are derived from the
classPhysi cal bj ect to render each of them, and thereby,
is able to render the entire 3D scene.

Thread 2 Thread 1 Thread 3
creates
new thread Initialize the
Robotic
Platform creates
v new thread
Scene Create a new
Viewer manipulator
v
Specify target Servo control
points loop
Priority 9 Priority 10 Priority 27

Figure 5. Creating New Threadsfor Concurrency

The functionality of the object manager is also necessary to\t program start, only thread 1 is executing. At the initialization

allow for generic code. Generic code operates any olgect 4

of the Robotic Platform library, a new thread is created that



executes the 3D Scene Viewer. Then, the user’s robot controtlassesVat ri xBase andVect or Base are pure virtual base
program utilizes a new object of a manipulator class. Theclasses that allow for manipulation of matrices and vectors of an
creation of this manipulator object automatically spawns a thirdunknown size. Matrices and vectors of an unknown size are
thread for the servo control loop. Hence, the first thread can gaeequired during generic manipulator programming. The class
ahead and specify target points for the manipulator, while theTr ansf or m implements a homogenous 4x4 matrix, which is
servo control loop and the Scene Viewer run in the backgroundypically used to represent coordinate frames in robotic
To ensure real-time behavior of time critical tasks, the threadsapplications. The clasdat hException is used for error-

run at different prioritiese(g., the servo control loop runs at the recovery. The example program shown in Figure 8 performs a
high priority 27). To allow for synchronized communication common task in robotics: Calculating a position equation. This

between the threads, message passing (as provided by the clasgg@mple shows that programming with the math library is very
Cient and Server) and standard thread synchronization jntuitive.

mechanisms are used (as implemented in the cl&sses er
andReader Wi t er Lock).

‘ VectorBase<T> ‘ ‘ MatrixBase<T> ‘
i t
.
9. CONTROL IMPLEMENTATION WITH QMOTOR [Matrix<rows, columns, T> | ighpassFilter<T>
QMotor [13] is a complete environment for implementing and | ‘ | DfferentaoreT
tuning control strategies. To implement a real-time control loop, [ColumnVector<size, T>| [RowVectorssize, 7>| [Transform| ifferentiator
the programmer derives a class from the class i _
Cont rol Program and reimplements several functions that

perform the control calculation and the housekeeping. Once a
control program is implemented and compiled, the user can start
up the QMotor GUI, load the control program, start it, and tune
the control strategy from the control parameter window.
Furthermore, the user can open multiple real-time plot windows g
(see Figure 6) and set logging modes. To utilize QMotor for the
Robotic Platform, classes that require a real-time control loop
(e.g., Def aul t Mani pul at or) are derived from QMotor's
Cont r ol Progr amclass.

Figure 7. ClassHierarchy of theMath Library

T6 TransformZ = translation(0, 0, 0.7);
TransformE = translation(0, 0, 0.1);
Transform W= translation(1, 0.2, 0.3)
* xRotation(MPI);
Transform P = translation(-0.5, 0, 0);

b(':

A

N

/1 Solve Z*T6*E == WP
Tr ansf or m T6;
T6 = inverse(Z) * W* P * inverse(E);

Figure 8. Example Program for the Matrix Classes

Plot  Run  View Help

- 4 destrecposition (0] The math library also provides the classeswassFilter
wh and H ghpassFi | t er for numeric filtering, and the classes

Differentiator and Integrator for numeric
differentiation and integration. These classes are parameterized

1:_ - with the data typeif., they work with scalars, vectors, and
i U | matrices).

s ¢ s s 7 s s om ou 11. THE GRAPHICAL USERINTERFACE
Time [sec]
& B Whenever a program of the Robotic Platform is executed, the
] _ Scene Viewer window opens up, displaying the 3D scene that
Figure 6. The QMotor Plot Window contains all objects created in the robot control program (see

Figure 9). To assemble the 3D scene, the Scene Viewer loops
through all physical objects and obtains their Open Inventor 3D
10. THE MATH LIBRARY data. Then, the Scene Viewer uses the object connection
Previous robot control libraries often introduced their own relationships to display the 3D objects at the right position.
specific robotic data types. Most of these data types are based drurthermore, the Scene Viewer continuously updates the 3D
vectors or matrices(g., a homogeneous transformation is a 4x4 scene with the current state of all objeets.( it uses the current
matrix). Hence, it is more feasible and flexible to use a generajoint position of a manipulator to display the joints in the correct
C++ matrix library and define robotic types on top of it. Most of position). Hence, the 3D scene always represents the current
the matrix libraries available for C++ use dynamic memory state of the hardware (in simulation mode, the simulated state of
allocation, which risks the loss of deterministic real-time the hardware is represented). To select the best viewing position,
response [10]. To overcome this disadvantage, special real-timéhe user can navigate in the 3D scene using the mouse. The user
matrix classes (see Figure 7) were developed for the Robotican also open the Object List window, which displays a list of all
Platform that use templates for the matrix size. Consequentlypbjects that are currently instantiated by the robot control
the matrix size is known at compile time and dynamic memoryprogram, including class name, object name, and object status.
allocation is not required. The classelshtri xBase, Each object has an individual pop-up menu. This pop-menu
Vect or Base, Matri x, Col umVect or, Rowect or, and appears if the user right clicks on the object in the Scene Viewer
Vect or are also parameterized with the data type of therendering area or the Object List window. The pop-up menu has
elements. The default element data type is double, which is theptions to select 3D display modes and to open the object’s
standard floating-point data type of the Robotic Platform. Thecontrol panel. Additionally, there are menu items that are



specific to the class of the object. For example, a gripper object
has additional menu items to open, close, and relax the gripper.

The Robotic Platform provides several GUI utility programs for
calibration and testing. Among others, the Teachpendant allows
the user to move the manipulator to desired target position in
zero gravity mode, and store these positions in a list. The
Teachpendant also utilizes the trajectory generator to move the
manipulator back to stored positions.

Wincow Help

Class

Name

4~ Pumase0 lzacer oK

4~ Pumaseo follower 0K

@ DefaultTrajectoryGenerator<6>  tragen oK

rr;”é DefaultTrajectoryGenerator<6>  tragen oK

Figure 9. The Scene Viewer and the Object List Window

12. WRITING, COMPILING, LINKING, AND STARTING
RoBoT CONTROL PROGRAMS

A robot control program is first compiled and then linked to the
Robotic Platform library. Once the program is compiled and
linked, the user can start it from the command line. Figure 10
shows the listing of an example robot control program for a
simple pick and place operation.

Every robot control program first cals
RoboticPlatform :init(). This function initiaizes the

13. CONCLUSIONS

As opposed to past distributed robot control platforms, the
Robotic Platform presents a homogeneous, non-distributed
object-oriented architecture. That is, based on PC technology
and the QNX RTP, al non real-time and real-time components
are integrated in a single C++ library. The architecture of the
Robotic Platform provides efficient integration and extensibility
of devices, control strategies, trgjectory generation, and GUI
components. The Robotic Platform is built on the QMotor
control environment for data logging, control parameter tuning,
and real-time plotting. A new, rea-time math library simplifies
operations and allow for an easy-to-use programming interface.
Built-in GUI components like the Scene Viewer and the control
panels provide for a comfortable operation of the Robotic
Platform and a quick ramp-up-time even for users that are

inexperienced in C++ programming.

REFERENCES

(4

(2]

(3]

[4]
(5]

platform and starts up the Scene Viewer. Then, the user's
program creates all objects that are required for the robotic task]
(i.e, a gripper object, a Puma 560 object, and a trajectory
generator object are created). The last part of the example
program utilizes the trajectory generator object and the grippet’!
object to move the robot to the work piece, close the gripper,

pick up the work piece, and drop it at the target position.

#include “RoboticPlatform.hpp”

void main(int argc, char *argvl[])
RoboticPlatform::init(argc, argv);

Puma560 puma;
DefaultGripper gripper;

DefaultTrajectoryGenerator<6> tragen;
puma.setTrajectoryGenerator(tragen);
Transform down = xRotation(M_PI); // End-effector
/I pointing down

gripper.open();
tragen.moveTo(translation(0, 0.5, 0) * down);
tragen.stop(1);
gripper.close();
tragen.moveTo(translation(0.5, 0.5, 1) * down);
tragen.moveTo(translation(1, 1, 0) * down);
tragen.stop(1);
gripper.open();

}

Figure 10. A Simple Pick and Place Example Program

(8]
9]

(10]

(11]

(12]

(13]

J. Lloyd, M. Parker and R. McClain, “Extending the RCCL
Programming Environment to Multiple Robots and Processors”,
Proc. IEEE Int. Conf. Robotics & Automatioh988, pp. 465—
469.

P. Corke and R. Kirkham, “The ARCL Robot Programming
System”, Proc. Int. Conf. Robots for Competitive Industries,
Brisbane, Australia, pp. 484-493.

D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “CHIMERA II: A
Real-Time UNIX-Compatible Multiprocessor Operating System
for Sensor-based Control Applications”, tech. report CMU-RI-
TR-89-24, Robotics Institute, Gagie Mellon University,
September 1989.

B. Stroustrup, “What is ‘Object-Oriented Programming'?“, Proc.
1st European Software Festival. February, 1991.

D. J. Miller and R. C. Bnnox, “An Object-Oriented Environment
for Robot System Architectures”, IEEE Control Systems February
1991, pp. 14-23.

Chetan Kapoor, “A Reusable Operational Software Architecture
for Advanced Robotics”, Ph.D. thesis, University of Texas at
Austin, December 1996.

C. Pelich & F. M. Wahl, “A Programming Environment for a
Multiprocessor-Net Based Robot Control Unit”, Proc. 10th Int.
Conf. on High Performance Computing, Ottawa, Canada, 1996.

QSSL, Corporate Headquarters, 175 Terence Matthews Crescent,
Kanata, Ontario K2M 1W8 Canada, http://gnx.com.

N. Costescu, D. M. Dawson, and M. Loffler, “QMotor 2.0 - A PC
Based Real-Time Multitasking Graphical Control Environment”,
Junel999 EEE Control Systems Magazine, Vol. 19 Number 3,
pp. 68-76.

M. Loffler, D. Dawson, E. Zergeroglu, N. Costescu, “Object-
Oriented Techniques in Robot Manipulator Control Software
Development”, Proc. of the American Control Conference,
Arlington, VA, June 2001, to appear.

B. Stroustrup, “An Overview of the C++ Programming
Language”, Handbook of Object Technology, CRC Press. 1998,
ISBN 0-8493-3135-8.

Josie Wernecke, “The Inventor Mentor”, Addison-Wesley, ISBN
0-201-62495-8.

N. Costescu, M. Loffler, M. Feemster, and D. Dawson, “QMotor
3.0 — An Object Oriented System for PC Control Program
Implementation and Tuning”, Proc. of the American Control
Conference, Arlington, VA, June 2001, to appear.



